欧拉函数的性质及其证明
歐拉函數
-
ppp是素數,則有?(p)=p?1\phi(p) = p - 1?(p)=p?1
證明:顯然。
-
ppp是素數,n=pkn = p ^ kn=pk,則?(n)=pk?pk?1\phi(n) = p ^ k - p ^ {k - 1}?(n)=pk?pk?1
證明:
[1,n][1, n][1,n]內,ppp的約數有p,2p,3p,4p……(pk?1?1)pp, 2p, 3p, 4p……(p^{k - 1} - 1)pp,2p,3p,4p……(pk?1?1)p個,所以?(n)=pk?1?(pk?1?1)=pk?pk?1\phi(n) = p^k - 1 - (p ^ {k - 1} - 1) = p ^ k - p ^ {k - 1}?(n)=pk?1?(pk?1?1)=pk?pk?1
-
p,qp, qp,q是素數,?(pq)=?(p)??(q)\phi(pq) = \phi(p) * \phi(q)?(pq)=?(p)??(q)
證明:
pq?1pq - 1pq?1內是ppp的倍數的有q?1q - 1q?1個,是qqq的倍數的有p?1p - 1p?1個,?(pq)=pq?1?(q?1)?(p?1)=pq?p?q?1=(p?1)(q?1)=?(p)?(q)\phi(pq) = pq - 1 - (q - 1) - (p - 1) = pq - p - q - 1 = (p - 1)(q - 1) = \phi(p)\phi(q)?(pq)=pq?1?(q?1)?(p?1)=pq?p?q?1=(p?1)(q?1)=?(p)?(q)
拓展p,qp, qp,q互質即可滿足條件。
-
a%p==0,p是質數a \% p == 0, p是質數a%p==0,p是質數,則?(ap)=?(a)p\phi(ap) = \phi(a)p?(ap)=?(a)p
證明:
一定有a=kpna = kp^na=kpn,k,pk, pk,p互質,
∴?(a)=?(k)?(pn)\therefore \phi(a) = \phi(k)\phi(p^n)∴?(a)=?(k)?(pn)
∴?(k)=?(a)?(an)\therefore\phi(k) = \frac{\phi(a)}{\phi(a^n)}∴?(k)=?(an)?(a)?
∵ap=kpn+1\because ap = k p ^{n + 1}∵ap=kpn+1
∴?(ap)=?(k)?(pn+1)\therefore\phi(ap) = \phi(k)\phi(p ^{n + 1})∴?(ap)=?(k)?(pn+1)
∴?(ap)=?(a)?(pn+1)?(pn)\therefore\phi(ap) = \phi(a) \frac{\phi(p ^{n + 1})}{\phi(p ^n)}∴?(ap)=?(a)?(pn)?(pn+1)?
∵?(pn+1)=pn+1?pn,?(pn)=pn?pn?1\because \phi(p ^{n + 1}) = p ^{n + 1} - p ^ n, \phi(p ^n) = p ^ n - p ^{n - 1}∵?(pn+1)=pn+1?pn,?(pn)=pn?pn?1
∴?(ap)=?(a)?(pn+1)?(pn)=?(a)pn+1?pnpn?pn?1\therefore\phi(ap) = \phi(a) \frac{\phi(p ^ {n + 1})}{\phi(p ^ n)} = \phi(a) \frac{p ^ {n + 1} - p ^ n}{p ^n - p ^ {n - 1}}∴?(ap)=?(a)?(pn)?(pn+1)?=?(a)pn?pn?1pn+1?pn?
∴?(ap)=?(a)p\therefore \phi(ap) = \phi(a)p∴?(ap)=?(a)p
-
n=p1a1p2a2……pnann = p_1 ^ {a_1}p_2 ^ {a_2}……p_n ^{a_n}n=p1a1??p2a2??……pnan??則,?(n)=n(1?1p1)(1?1p2)……1pn\phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})……\frac{1}{p_n}?(n)=n(1?p1?1?)(1?p2?1?)……pn?1?
證明:
∵?(n)=?(p1a1)?(p2a2)……?(pnan)\because\phi(n) = \phi(p_1^{a_1})\phi(p_2^{a_2})……\phi(p_n^{a_n})∵?(n)=?(p1a1??)?(p2a2??)……?(pnan??)
∴?(n)=(p1a1?p1a1?1)(p2a2?p2a2?1)……(pnan?pnan?1)\therefore\phi(n) = (p_1^{a_1} - p_1^{a_1 - 1})(p_2^{a_2} - p_2 ^{a_2 - 1})……(p_n ^{a_n} - p_n^{a_n - 1})∴?(n)=(p1a1???p1a1??1?)(p2a2???p2a2??1?)……(pnan???pnan??1?)
每個括號里提出一個piaip_i ^{a_i}piai??得?(n)=p1a1p2a2……pnan(1?1p1)(1?1p2)……1pn\phi(n) = p_1 ^ {a_1}p_2 ^ {a_2}……p_n ^{a_n}(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})……\frac{1}{p_n}?(n)=p1a1??p2a2??……pnan??(1?p1?1?)(1?p2?1?)……pn?1?
即證得:?(n)=n(1?1p1)(1?1p2)……1pn\phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})……\frac{1}{p_n}?(n)=n(1?p1?1?)(1?p2?1?)……pn?1?
-
關于歐拉函數得遞推求法
顯然可以在歐拉素數篩的同時得到歐拉函數值
prime[j]∣iprime[j] \mid iprime[j]∣i時,有?(i?prime[j])=?(i)?prime[j]\phi(i * prime[j]) = \phi(i) * prime[j]?(i?prime[j])=?(i)?prime[j]
其次就是兩個互質的情況了
?(i?prime[j])=?(i)?(prime[j]?1)\phi(i * prime[j]) = \phi(i) * (prime[j] - 1)?(i?prime[j])=?(i)?(prime[j]?1)
再最后就是iii為質數的情況了,?(i)=i?1\phi(i) = i - 1?(i)=i?1
-
nnn的所有約數的歐拉函數之和等于nnn
證明:
-
對于給定nnn,∑i=1n?1i(gcd(i,n)==1)=n?n2\sum_{i = 1}^{n - 1}i(gcd(i, n) == 1) = \frac{n\phi{n}}{2}∑i=1n?1?i(gcd(i,n)==1)=2n?n?
證明:
顯然gcd(i,n)=1gcd(i, n) = 1gcd(i,n)=1,則有gcd(n?i,n)=1gcd(n - i, n) = 1gcd(n?i,n)=1,所以互質數兩兩存在則有上面式子∑i=1n?1i(gcd(i,n)==1)=n?n2\sum_{i = 1}^{n - 1}i(gcd(i, n) == 1) = \frac{n\phi{n}}{2}∑i=1n?1?i(gcd(i,n)==1)=2n?n?成立。
-
d=gcd(a,b)d = gcd(a, b)d=gcd(a,b),?(ab)=?(a)?(b)d?(d)\phi(ab) = \frac{\phi(a)\phi(b)d}{\phi(d)}?(ab)=?(d)?(a)?(b)d?
證明:
總結
以上是生活随笔為你收集整理的欧拉函数的性质及其证明的全部內容,希望文章能夠幫你解決所遇到的問題。