UA OPTI544 量子光学8 2-level system approximation的population rate equation模型
UA OPTI544 量子光學8 2-level system approximation的population rate equation模型
- Density Matrix的穩(wěn)態(tài)(假設(shè)無非彈性碰撞)
- Elastic Collision Broadening
- 光子通量
- Rate Equation的解(假設(shè)無非彈性碰撞)
- Power Broadening
- σ(Δ)\sigma(\Delta)σ(Δ)的表達式(假設(shè)無碰撞)
在上一講的結(jié)尾,我們得到了光與粒子交互系統(tǒng)的2-level system approximation的density matrix的演化方程:
{ρ˙11=?Γ1ρ11+A21ρ22?i2(χρ12?χ?ρ21)ρ˙22=?Γ2ρ22?A21ρ22+i2(χρ12?χ?ρ21)ρ˙12=(iΔ?β)ρ12+iχ?2(ρ22?ρ11)=ρ˙21?β=1τ+Γ1+Γ22+A212\begin{cases} \dot \rho_{11} =-\Gamma_1\rho_{11}+A_{21}\rho_{22} -\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21}) \\ \dot \rho_{22}=-\Gamma_2\rho_{22}-A_{21}\rho_{22}+\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21}) \\ \dot \rho_{12} = (i \Delta-\beta) \rho_{12}+\frac{i\chi^*}{2}(\rho_{22}-\rho_{11}) = \dot \rho_{21}^* \\ \beta = \frac{1}{\tau}+\frac{\Gamma_1+\Gamma_2}{2}+\frac{A_{21}}{2}\end{cases}??????????ρ˙?11?=?Γ1?ρ11?+A21?ρ22??2i?(χρ12??χ?ρ21?)ρ˙?22?=?Γ2?ρ22??A21?ρ22?+2i?(χρ12??χ?ρ21?)ρ˙?12?=(iΔ?β)ρ12?+2iχ??(ρ22??ρ11?)=ρ˙?21??β=τ1?+2Γ1?+Γ2??+2A21???
ρ11,ρ22\rho_{11},\rho_{22}ρ11?,ρ22?代表population,ρ12,ρ21\rho_{12},\rho_{21}ρ12?,ρ21?代表coherence,這個方程雖然具有一般性,但要解這個方程十分困難。因此這一講我們在不解演化方程的情況下,用它來推導(dǎo)光與粒子交互系統(tǒng)的2-level system approximation的一些性質(zhì)。
Density Matrix的穩(wěn)態(tài)(假設(shè)無非彈性碰撞)
假設(shè)Γ1=Γ2=0\Gamma_1=\Gamma_2=0Γ1?=Γ2?=0,穩(wěn)態(tài)說明population與coherence都沒有變化,即其導(dǎo)數(shù)為0,所以
ρ˙12=0?{ρ12=iχ?/2β?iΔ(ρ22?ρ11)ρ21=?iχ/2β+iΔ(ρ22?ρ11)\dot \rho_{12} =0 \Rightarrow \begin{cases} \rho_{12}=\frac{i\chi^*/2}{\beta-i\Delta}(\rho_{22}-\rho_{11}) \\ \rho_{21}=\frac{-i\chi/2}{\beta+i\Delta}(\rho_{22}-\rho_{11}) \end{cases}ρ˙?12?=0?{ρ12?=β?iΔiχ?/2?(ρ22??ρ11?)ρ21?=β+iΔ?iχ/2?(ρ22??ρ11?)?
代入到population中,
{ρ˙11=A21ρ22?i2(χρ12?χ?ρ21)=A21ρ22+∣χ∣2β/2Δ2+β2(ρ22?ρ11)ρ˙22=?A21ρ22+i2(χρ12?χ?ρ21)=?A21ρ22?∣χ∣2β/2Δ2+β2(ρ22?ρ11)\begin{cases} \dot \rho_{11} =A_{21}\rho_{22} -\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21})=A_{21}\rho_{22}+\frac{|\chi|^2\beta/2}{\Delta^2+\beta^2}(\rho_{22}-\rho_{11}) \\ \dot \rho_{22}=-A_{21}\rho_{22}+\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21})= -A_{21}\rho_{22}-\frac{|\chi|^2\beta/2}{\Delta^2+\beta^2}(\rho_{22}-\rho_{11})\end{cases}{ρ˙?11?=A21?ρ22??2i?(χρ12??χ?ρ21?)=A21?ρ22?+Δ2+β2∣χ∣2β/2?(ρ22??ρ11?)ρ˙?22?=?A21?ρ22?+2i?(χρ12??χ?ρ21?)=?A21?ρ22??Δ2+β2∣χ∣2β/2?(ρ22??ρ11?)?
這兩個方程被稱為population rate equation,就物理意義而言,這個方程組描述的是激發(fā)過程,
∣2?|2 \rangle∣2?代表高能態(tài),∣1?|1 \rangle∣1?代表低能態(tài),A21ρ22A_{21}\rho_{22}A21?ρ22?代表從高能態(tài)向低能態(tài)的自發(fā)衰變,Γ1ρ11,Γ2ρ22\Gamma_1 \rho_{11},\Gamma_2 \rho_{22}Γ1?ρ11?,Γ2?ρ22?代表兩個量子態(tài)的population的非彈性碰撞衰變,R12ρ11R_{12}\rho_{11}R12?ρ11?代表由低能態(tài)向高能態(tài)的激發(fā),R12ρ22R_{12}\rho_{22}R12?ρ22?代表由高能態(tài)向低能態(tài)的釋放,R12R_{12}R12?代表兩個能態(tài)之間的激發(fā)率(absorption rate或者stimulated emission rate),
R12=∣χ∣2β/2Δ2+β2R_{12}=\frac{|\chi|^2\beta/2}{\Delta^2+\beta^2}R12?=Δ2+β2∣χ∣2β/2?
Elastic Collision Broadening
在高溫且稠密的氣體介質(zhì)中,彈性碰撞在粒子的非哈密頓行為(彈性碰撞、非彈性碰撞、自發(fā)衰變)中占主體,即β>>A21,Γ1,Γ2\beta>>A_{21},\Gamma_1,\Gamma_2β>>A21?,Γ1?,Γ2?,在這種情況下,coherence會比population更先到達穩(wěn)態(tài),這種情況被稱為Elastic Collision Broadening,此時population ρ11,ρ22\rho_{11},\rho_{22}ρ11?,ρ22?的行為可以用Rabi Oscillation類比。
在這種情況下,如果碰撞次數(shù)足夠多,且dipole moment方向相對driving field隨機分布時,?∣p?12??^E0/h∣2?angle=13∣p?12∣2E02=13∣χ∣2\langle |\vec p_{12} \cdot \hat \epsilon E_0/h|^2 \rangle_{\text{angle}}=\frac{1}{3}|\vec p_{12}|^2E_0^2=\frac{1}{3}|\chi|^2?∣p?12???^E0?/h∣2?angle?=31?∣p?12?∣2E02?=31?∣χ∣2,
R12=13∣χ∣2β/2Δ2+β2R_{12}=\frac{1}{3}\frac{|\chi|^2\beta/2}{\Delta^2+\beta^2}R12?=31?Δ2+β2∣χ∣2β/2?
光子通量
記R12=σ(Δ)?R_{12}=\sigma(\Delta)\phiR12?=σ(Δ)?,其中?\phi?是光子通量(photon flux),滿足
?w?=12c?0∣E0∣2?光強intensity\hbar w \phi =\underbrace{ \frac{1}{2}c\epsilon_0|E_0|^2}_{光強\text{intensity}}?w?=光強intensity21?c?0?∣E0?∣2??
由此可以將population rate equation用光子通量表示,
{ρ˙11=?Γ1ρ11+A21ρ22+σ(Δ)?(ρ22?ρ11)ρ˙22=?Γ2ρ22?A21ρ22?σ(Δ)?(ρ22?ρ11)\begin{cases} \dot \rho_{11} =-\Gamma_1 \rho_{11}+A_{21}\rho_{22}+\sigma(\Delta)\phi(\rho_{22}-\rho_{11}) \\ \dot \rho_{22}=-\Gamma_2 \rho_{22} -A_{21}\rho_{22}-\sigma(\Delta)\phi(\rho_{22}-\rho_{11})\end{cases}{ρ˙?11?=?Γ1?ρ11?+A21?ρ22?+σ(Δ)?(ρ22??ρ11?)ρ˙?22?=?Γ2?ρ22??A21?ρ22??σ(Δ)?(ρ22??ρ11?)?
如果有NNN個粒子,則
- Number of Absorption Events為Nσ(Δ)?ρ11N\sigma(\Delta)\phi \rho_{11}Nσ(Δ)?ρ11?
- Number of Stimulated Emission Events為Nσ(Δ)?ρ22N\sigma(\Delta)\phi \rho_{22}Nσ(Δ)?ρ22?
Rate Equation的解(假設(shè)無非彈性碰撞)
假設(shè)Γ1=Γ2=0\Gamma_1=\Gamma_2=0Γ1?=Γ2?=0,并且根據(jù)ρ11+ρ22=1\rho_{11}+\rho_{22}=1ρ11?+ρ22?=1,
ρ˙22=?A21ρ22?σ(Δ)?(2ρ22?1)=σ(Δ)??(A21+2σ(Δ))ρ22?damping?effect\begin{aligned}\dot \rho_{22} & = -A_{21}\rho_{22}-\sigma(\Delta)\phi(2 \rho_{22}-1) \\ & =\sigma(\Delta)\phi\underbrace{-(A_{21}+2\sigma(\Delta))\rho_{22} }_{\text{damping\ effect}}\end{aligned}ρ˙?22??=?A21?ρ22??σ(Δ)?(2ρ22??1)=σ(Δ)?damping?effect?(A21?+2σ(Δ))ρ22????
記γ=A21+2σ(Δ)\gamma=A_{21}+2\sigma(\Delta)γ=A21?+2σ(Δ)為damping coefficient,這個方程的解為
ρ22(t)=[ρ22(0)?ρ22(∞)]e?γt+ρ22(∞)ρ22(∞)=σ(Δ)?γ\rho_{22}(t)=[\rho_{22}(0)-\rho_{22}(\infty)]e^{-\gamma t}+\rho_{22}(\infty) \\ \rho_{22}(\infty)=\frac{\sigma(\Delta)\phi}{\gamma}ρ22?(t)=[ρ22?(0)?ρ22?(∞)]e?γt+ρ22?(∞)ρ22?(∞)=γσ(Δ)??
其中ρ22(0)\rho_{22}(0)ρ22?(0)為初始值,ρ22(∞)\rho_{22}(\infty)ρ22?(∞)為穩(wěn)態(tài)值,
Power Broadening
代入受激發(fā)射率的表達式,
ρ22(∞)=σ(Δ)?γ=∣χ∣2β2A21Δ2+β2+∣χ∣2βA21\rho_{22}(\infty)=\frac{\sigma(\Delta)\phi}{\gamma}=\frac{\frac{|\chi|^2\beta }{2A_{21}}}{\Delta^2+\beta^2+\frac{|\chi|^2\beta }{A_{21}}}ρ22?(∞)=γσ(Δ)??=Δ2+β2+A21?∣χ∣2β?2A21?∣χ∣2β??
當σ(Δ)?>>A21\sigma(\Delta)\phi>>A_{21}σ(Δ)?>>A21?時,ρ22(∞)→12\rho_{22}(\infty) \to \frac{1}{2}ρ22?(∞)→21?,這種情況被稱為Power Broadening,此時粒子處于高能態(tài)與低能態(tài)的概率相等,系統(tǒng)處于飽和(saturation)狀態(tài),此時光子通量和光強為
?sat=A212σ(0),Isat=?w?sat\phi_{\text{sat}}=\frac{A_{21}}{2\sigma(0)},I_{\text{sat}}=\hbar w\phi_{\text{sat}}?sat?=2σ(0)A21??,Isat?=?w?sat?
σ(Δ)\sigma(\Delta)σ(Δ)的表達式(假設(shè)無碰撞)
因為
R12=∣χ∣2β/2Δ2+β2R12=σ(Δ)?=σ(Δ)12c?0∣E0∣2?wR_{12}=\frac{|\chi|^2\beta/2}{\Delta^2+\beta^2} \\ R_{12} = \sigma(\Delta) \phi = \sigma(\Delta) \frac{\frac{1}{2}c\epsilon_0 |E_0|^2}{\hbar w}R12?=Δ2+β2∣χ∣2β/2?R12?=σ(Δ)?=σ(Δ)?w21?c?0?∣E0?∣2?
其中
∣χ∣2=f∣p?12∣2∣E0∣2?2,13≤f≤1|\chi|^2=f \frac{|\vec p_{12}|^2|E_0|^2}{\hbar^2},\frac{1}{3} \le f \le 1∣χ∣2=f?2∣p?12?∣2∣E0?∣2?,31?≤f≤1
1/31/31/3對應(yīng)elastic collision broadening,111對應(yīng)elastic collision free,由此
σ(Δ)=fw∣p?12∣2?c?0ββ2Δ2+β2=σ(0)β2Δ2+β2\sigma(\Delta) = f \frac{w|\vec p_{12}|^2}{\hbar c \epsilon_0 \beta} \frac{\beta^2}{\Delta^2+\beta^2}=\sigma(0)\frac{\beta^2}{\Delta^2+\beta^2}σ(Δ)=f?c?0?βw∣p?12?∣2?Δ2+β2β2?=σ(0)Δ2+β2β2?
假設(shè)collision free(無彈性碰撞與非彈性碰撞),則
σ(0)=f2w∣p?12∣2?c?0A21=f4π??0λ∣p?12∣2A21\sigma(0)= f \frac{2w|\vec p_{12}|^2}{\hbar c \epsilon_0A_{21}}=f \frac{4 \pi}{\hbar \epsilon_0 \lambda}\frac{|\vec p_{12}|^2}{A_{21}} σ(0)=f?c?0?A21?2w∣p?12?∣2?=f??0?λ4π?A21?∣p?12?∣2?
A21A_{21}A21?與∣p?12∣2|\vec p_{12}|^2∣p?12?∣2的關(guān)系推導(dǎo)需要用到量子電動力學,所以這里先直接給結(jié)論,
A21=∣p?12∣2w33π??c3A_{21}=\frac{|\vec p_{12}|^2 w^3}{3 \pi \epsilon \hbar c^3}A21?=3π??c3∣p?12?∣2w3?
代入σ(0)\sigma(0)σ(0)的表達式可得,
σ(0)=f3λ22π\(zhòng)sigma(0)=f \frac{3 \lambda^2}{2 \pi}σ(0)=f2π3λ2?
綜上,
σ(Δ)=f3λ22πβ2Δ2+β2\sigma(\Delta) =f \frac{3 \lambda^2}{2 \pi} \frac{\beta^2}{\Delta^2+\beta^2} σ(Δ)=f2π3λ2?Δ2+β2β2?
總結(jié)
以上是生活随笔為你收集整理的UA OPTI544 量子光学8 2-level system approximation的population rate equation模型的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA OPTI544 量子光学7 2-l
- 下一篇: UA MATH524 复变函数6 Gre