UA OPTI544 量子光学7 2-level system approximation的Density Matrix模型
UA OPTI544 量子光學7 2-level system approximation的Density Matrix模型
- Density Matrix的Rabi Equation
- Non-Hamiltonian Evolution
- Elastic Collision
- Inelastic Collision
- Spontaneous Decay
這一講我們用Density Operator討論2-level system,在關于Density Operator的補充內容中,我們推導了Density Operator滿足的薛定諤方程:
i?ddtρ=[H,ρ]i\hbar \fracze8trgl8bvbq{d t}\rho=[H,\rho]i?dtd?ρ=[H,ρ]
接下來我們代入light-matter interaction的2-level system Hamiltonian推導Density Operator的演化方程。
Density Matrix及其含義
在正式推導前,我們先搞明白在light-matter interaction的2-level system approximation中,Density Matrix及其含義。首先,量子態為∣1?,∣2?|1 \rangle,|2 \rangle∣1?,∣2?,讓其作為基向量,可以得到Density Operator的Maxtrix表示為
ρ=[ρ11ρ12ρ21ρ22]\rho = \left[ \begin{matrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{matrix} \right]ρ=[ρ11?ρ21??ρ12?ρ22??]
其中ρ11+ρ22=1\rho_{11}+\rho_{22}=1ρ11?+ρ22?=1,二者分別代表粒子在∣ψ1?|\psi_1 \rangle∣ψ1??與∣ψ2?|\psi_2\rangle∣ψ2??中被發現的概率,所以ρ11,ρ22∈R\rho_{11},\rho_{22} \in \mathbb Rρ11?,ρ22?∈R,稱其為population;因為ρ\rhoρ是厄爾米特算符,所以ρ12=ρ21?\rho_{12}=\rho_{21}^*ρ12?=ρ21??,因此只需要兩個實變量就可以確定這兩個次對角元,稱ρ12,ρ21\rho_{12},\rho_{21}ρ12?,ρ21?為coherence。總而言之,要確定Density Matrix的演化方程,本質上只需要三個實變量的微分方程,這個特點與Bloch Vector非常類似,借助這個思想我們可以建立2-level system approximation的Vector Model以及Maxwell-Bloch方程,但這些內容后面再談,這一講推導這幾個矩陣元的方程。
Density Matrix的Rabi Equation
ρ˙=?i?[H,ρ]=?i?(Hρ?ρH)\dot \rho=-\frac{i}{\hbar}[H,\rho]=-\frac{i}{\hbar}(H\rho-\rho H)ρ˙?=??i?[H,ρ]=??i?(Hρ?ρH),
Hρ?ρH=?[H11H12H21H22][ρ11ρ12ρ21ρ22]??[ρ11ρ12ρ21ρ22][H11H12H21H22]=?[H12ρ21?ρ12H21H11ρ12+H12ρ22?ρ11H12?ρ12H22H21ρ11+H22ρ21?ρ21H11?ρ22H21H21ρ12?ρ21H12]\begin{aligned}H \rho - \rho H & =\hbar \left[ \begin{matrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{matrix}\right]\left[ \begin{matrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{matrix}\right]-\hbar \left[ \begin{matrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{matrix}\right]\left[ \begin{matrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{matrix}\right] \\ & =\hbar \left[ \begin{matrix} H_{12}\rho_{21} -\rho_{12}H_{21} & H_{11}\rho_{12}+H_{12}\rho_{22}-\rho_{11}H_{12}-\rho_{12}H_{22} \\ H_{21}\rho_{11}+H_{22}\rho_{21}-\rho_{21}H_{11}-\rho_{22}H_{21} & H_{21}\rho_{12}-\rho_{21}H_{12} \end{matrix}\right]\end{aligned}Hρ?ρH?=?[H11?H21??H12?H22??][ρ11?ρ21??ρ12?ρ22??]??[ρ11?ρ21??ρ12?ρ22??][H11?H21??H12?H22??]=?[H12?ρ21??ρ12?H21?H21?ρ11?+H22?ρ21??ρ21?H11??ρ22?H21??H11?ρ12?+H12?ρ22??ρ11?H12??ρ12?H22?H21?ρ12??ρ21?H12??]?
Note that
H12=?12(χ12e?iwt+χ21?eiwt)H21=?12(χ21e?iwt+χ12?eiwt)H_{12} = -\frac{1}{2}(\chi_{12}e^{-iwt}+\chi_{21}^* e^{iwt}) \\ H_{21}= -\frac{1}{2}(\chi_{21}e^{-iwt}+\chi_{12}^* e^{iwt})H12?=?21?(χ12?e?iwt+χ21??eiwt)H21?=?21?(χ21?e?iwt+χ12??eiwt)
Plug-in and set ρ12=ρ~12eiwt\rho_{12} = \tilde \rho_{12}e^{iwt}ρ12?=ρ~?12?eiwt
ρ˙11=?i(H12ρ21?ρ12H21)=?i(?12(χ12e?i2wt+χ21?)ρ21+12(χ21e?i2wt+χ12?)ρ12)\begin{aligned}\dot \rho_{11} & =-i( H_{12}\rho_{21} -\rho_{12}H_{21}) \\ & =-i\left(-\frac{1}{2}(\chi_{12}e^{-i2wt}+\chi_{21}^* ) \rho_{21}+\frac{1}{2}(\chi_{21}e^{-i2wt}+\chi_{12}^* ) \rho_{12} \right) \end{aligned}ρ˙?11??=?i(H12?ρ21??ρ12?H21?)=?i(?21?(χ12?e?i2wt+χ21??)ρ21?+21?(χ21?e?i2wt+χ12??)ρ12?)?
drop the term ∝e±i2wt\propto e^{\pm i2 wt}∝e±i2wt, and set χ21=χ,χ21?=χ?\chi_{21}=\chi,\chi_{21}^*=\chi^*χ21?=χ,χ21??=χ?,
ρ˙11=?i2(χρ12?χ?ρ21)\dot \rho_{11} =-\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21}) ρ˙?11?=?2i?(χρ12??χ?ρ21?)
Hence, ρ˙22=?ρ˙11=i2(χρ12?χ?ρ21)\dot \rho_{22}=-\dot \rho_{11} =\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21})ρ˙?22?=?ρ˙?11?=2i?(χρ12??χ?ρ21?). Since
H11=0,H22=w21H11ρ12+H12ρ22?ρ11H12?ρ12H22=(w21?w)ρ12?12χ?ρ11+12χ?ρ22H21ρ11+H22ρ21?ρ21H11?ρ22H21=?(w21?w)ρ21+12χρ11?12χρ22H_{11}=0,H_{22}=w_{21} \\ \begin{aligned} & H_{11}\rho_{12}+H_{12}\rho_{22}-\rho_{11}H_{12}-\rho_{12}H_{22} = (w_{21}-w)\rho_{12}-\frac{1}{2}\chi^* \rho_{11}+\frac{1}{2}\chi^* \rho_{22}\end{aligned} \\ \begin{aligned} & H_{21}\rho_{11}+H_{22}\rho_{21}-\rho_{21}H_{11}-\rho_{22}H_{21} =-(w_{21}-w)\rho_{21}+\frac{1}{2}\chi \rho_{11}-\frac{1}{2}\chi \rho_{22}\end{aligned}H11?=0,H22?=w21??H11?ρ12?+H12?ρ22??ρ11?H12??ρ12?H22?=(w21??w)ρ12??21?χ?ρ11?+21?χ?ρ22???H21?ρ11?+H22?ρ21??ρ21?H11??ρ22?H21?=?(w21??w)ρ21?+21?χρ11??21?χρ22??
Thus,
ρ˙12=iΔρ12+iχ?2(ρ22?ρ11)ρ˙21=?iΔρ21?iχ2(ρ22?ρ11)\dot \rho_{12} = i \Delta \rho_{12}+\frac{i\chi^*}{2}(\rho_{22}-\rho_{11}) \\ \dot \rho_{21} = -i\Delta \rho_{21}-\frac{i\chi}{2}(\rho_{22}-\rho_{11})ρ˙?12?=iΔρ12?+2iχ??(ρ22??ρ11?)ρ˙?21?=?iΔρ21??2iχ?(ρ22??ρ11?)
綜上,
{ρ˙11=?i2(χρ12?χ?ρ21)ρ˙22=?ρ˙11=i2(χρ12?χ?ρ21)ρ˙12=iΔρ12+iχ?2(ρ22?ρ11)ρ˙21=?iΔρ21?iχ2(ρ22?ρ11)\begin{cases} \dot \rho_{11} =-\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21}) \\ \dot \rho_{22}=-\dot \rho_{11} =\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21}) \\ \dot \rho_{12} = i \Delta \rho_{12}+\frac{i\chi^*}{2}(\rho_{22}-\rho_{11}) \\ \dot \rho_{21} = -i\Delta \rho_{21}-\frac{i\chi}{2}(\rho_{22}-\rho_{11})\end{cases}??????????ρ˙?11?=?2i?(χρ12??χ?ρ21?)ρ˙?22?=?ρ˙?11?=2i?(χρ12??χ?ρ21?)ρ˙?12?=iΔρ12?+2iχ??(ρ22??ρ11?)ρ˙?21?=?iΔρ21??2iχ?(ρ22??ρ11?)?
這被稱為Density Matrix的Rabi方程。
Non-Hamiltonian Evolution
在實際應用中,上述方程還是過于理想了,因為在粒子的互動中,有可能發生一些非哈密頓的行為,比如彈性碰撞、非彈性碰撞、自發衰變等。
Elastic Collision
彈性碰撞中能量是守恒的,所以Bohr頻率在碰撞前后不會改變,但在碰撞過程中會有一定的變化,這時拋開上述方程,只考慮Density Matrix Element ρ12\rho_{12}ρ12?在短時間內由彈性碰撞導致的演化,我們可以寫出下面的微分方程:
ρ˙12=?i(w21+δw)ρ12?ρ12(t)=ρ12(0)e?iw21te?i∫0tδw(t′)dt′?碰撞過程導致的相位改變\dot \rho_{12}=-i(w_{21}+\delta w)\rho_{12} \Rightarrow \rho_{12}(t)=\rho_{12}(0)e^{-iw_{21}t}\underbrace{e^{-i \int_0^t \delta w(t')dt'}}_{碰撞過程導致的相位改變}ρ˙?12?=?i(w21?+δw)ρ12??ρ12?(t)=ρ12?(0)e?iw21?t碰撞過程導致的相位改變e?i∫0t?δw(t′)dt′??
引入下列假設簡化這個結果:
- 對所有粒子而言,δw(t)\delta w(t)δw(t)是獨立同分布的零均值高斯過程(零均值保證彈性碰撞中能量的期望是守恒的);
- 碰撞具有無記憶性,即?δw(t)δw(t′)?=2τδ(t?t′)\langle \delta w(t)\delta w(t') \rangle=\frac{2}{\tau}\delta(t-t')?δw(t)δw(t′)?=τ2?δ(t?t′)(2/τ2/\tau2/τ表示δw(t)\delta w(t)δw(t)的方差)
根據這兩個假設可得
?e?i∫0tδw(t′)dt′?=e?t/τ\langle e^{-i \int_0^t \delta w(t')dt'} \rangle = e^{-t/\tau}?e?i∫0t?δw(t′)dt′?=e?t/τ
于是
ρ12(t)=ρ12(0)e?iw21te?t/τ\rho_{12}(t)=\rho_{12}(0)e^{-iw_{21}t}e^{-t/\tau}ρ12?(t)=ρ12?(0)e?iw21?te?t/τ
這說明τ\tauτ的物理含義是彈性碰撞導致的coherence的衰變時間,由此修正它的ODE為
ρ˙12=(ρ˙12)S.E.?1τρ12\dot \rho_{12}=(\dot \rho_{12})_{S.E.}-\frac{1}{\tau} \rho_{12}ρ˙?12?=(ρ˙?12?)S.E.??τ1?ρ12?
- (ρ˙12)S.E.(\dot \rho_{12})_{S.E.}(ρ˙?12?)S.E.?表示薛定諤方程中coherence的變化率;
- ?1τρ12-\frac{1}{\tau} \rho_{12}?τ1?ρ12?表示Elastic Collision Decay
Inelastic Collision
非彈性碰撞相比彈性碰撞會出現atom loss,Tr(ρ)Tr(\rho)Tr(ρ)不再守恒,用Γ1,Γ2\Gamma_1,\Gamma_2Γ1?,Γ2?表示rate of loss,則方程修正如圖,它對population的影響如下:
其中e?Γ1+Γ22te^{-\frac{\Gamma_1+\Gamma_2}{2}t}e?2Γ1?+Γ2??t被稱為Inelastic Collision Decay。
由此修正它的ODE為
ρ˙12=(ρ˙12)S.E.?1τρ12?Γ1+Γ22ρ12\dot \rho_{12}=(\dot \rho_{12})_{S.E.}-\frac{1}{\tau} \rho_{12}-\frac{\Gamma_1+\Gamma_2}{2}\rho_{12}ρ˙?12?=(ρ˙?12?)S.E.??τ1?ρ12??2Γ1?+Γ2??ρ12?
- ?Γ1+Γ22ρ12-\frac{\Gamma_1+\Gamma_2}{2}\rho_{12}?2Γ1?+Γ2??ρ12?表示Inelastic Collision Decay
Spontaneous Decay
自發衰變是由粒子與量子化電磁場的交互導致的,但場的量子化以及量子電動力學要在Density Matrix討論完后才會學,所以先跳過這部分直接給結論。在自發衰變存在時,population與coherence都會受到影響:
ρ˙11=A21ρ22ρ˙22=?A21ρ11ρ˙21=?A212ρ12=ρ˙21?\dot \rho_{11} = A_{21}\rho_{22} \\ \dot \rho_{22}=-A_{21} \rho_{11} \\ \dot \rho_{21} = -\frac{A_{21}}{2} \rho_{12} = \dot \rho_{21}^*ρ˙?11?=A21?ρ22?ρ˙?22?=?A21?ρ11?ρ˙?21?=?2A21??ρ12?=ρ˙?21??
這些效應被稱為Spontaneous Decay,其中A21A_{21}A21?代表粒子從高能態∣2?|2 \rangle∣2?向低能態∣1?|1 \rangle∣1?自發衰變的強度。
現在把Elastic Collision Decay、Inelastic Collision Decay與Spontaneous Decay加入到薛定諤方程中可得2-level system approximation的Density Matrix一般演化方程:
{ρ˙11=?Γ1ρ11+A21ρ22?i2(χρ12?χ?ρ21)ρ˙22=?Γ2ρ22?A21ρ22+i2(χρ12?χ?ρ21)ρ˙12=(iΔ?β)ρ12+iχ?2(ρ22?ρ11)=ρ˙21?β=1τ+Γ1+Γ22+A212\begin{cases} \dot \rho_{11} =-\Gamma_1\rho_{11}+A_{21}\rho_{22} -\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21}) \\ \dot \rho_{22}=-\Gamma_2\rho_{22}-A_{21}\rho_{22}+\frac{i}{2}(\chi \rho_{12}-\chi^* \rho_{21}) \\ \dot \rho_{12} = (i \Delta-\beta) \rho_{12}+\frac{i\chi^*}{2}(\rho_{22}-\rho_{11}) = \dot \rho_{21}^* \\ \beta = \frac{1}{\tau}+\frac{\Gamma_1+\Gamma_2}{2}+\frac{A_{21}}{2}\end{cases}??????????ρ˙?11?=?Γ1?ρ11?+A21?ρ22??2i?(χρ12??χ?ρ21?)ρ˙?22?=?Γ2?ρ22??A21?ρ22?+2i?(χρ12??χ?ρ21?)ρ˙?12?=(iΔ?β)ρ12?+2iχ??(ρ22??ρ11?)=ρ˙?21??β=τ1?+2Γ1?+Γ2??+2A21???
總結
以上是生活随笔為你收集整理的UA OPTI544 量子光学7 2-level system approximation的Density Matrix模型的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Deseq2的理论基础
- 下一篇: UA OPTI544 量子光学8 2-l