【Paper】2020_Event-Triggered Time-Varying Formation Control for Discrete-Time Multi-Agent Systems wit
Z. Yan, L. Han, X. Li, X. Dong, Q. Li and Z. Ren, “Event-Triggered Time-Varying Formation Control for Discrete-Time Multi-Agent Systems with Communication Delays,” 2020 Chinese Automation Congress (CAC), 2020, pp. 6707-6711, doi: 10.1109/CAC51589.2020.9326758.
文章目錄
- I. Introduction
- II. Preliminaries
- A. Graph theory and notations
- B. Problem description
- III. Main results
- A. Event-triggered control protocol
- B. Stability analysis
- IV. Simulation
- V. Conclusion
I. Introduction
II. Preliminaries
A. Graph theory and notations
W=[wij]∈RN×NW = [w_{ij}] \in \R^{N \times N}W=[wij?]∈RN×N is adjacency matrix.
SSS is in-degree matrix.
Laplacian L=S?WL = S - WL=S?W
B. Problem description
xi(k+1)=xi(k)+vi(k)Tvi(k+1)=vi(k)+ui(k)T(1)\begin{aligned} x_i(k+1) &= x_i(k) + v_i(k) T \\ v_i(k+1) &= v_i(k) + u_i(k) T \\ \tag{1} \end{aligned}xi?(k+1)vi?(k+1)?=xi?(k)+vi?(k)T=vi?(k)+ui?(k)T?(1)
III. Main results
A. Event-triggered control protocol
ui(k)=K2∑j∈Niwij[Ak?kmi(Ψi(kmi?τ)?hi(kmi?τ))?Ak?kmi(Ψj(kmj?τ)?hj(kmj?τ))]+[hiv(k+1)?hiv(k)]/T+K1(Ψi(k)?hi(k))(7)\begin{aligned} u_i(k) &= K_2 \sum_{j\in N_i} w_{ij} [A^{k - k_m^i} (\varPsi_i(k_m^i - \tau) - h_i(k_m^i - \tau)) - A^{k - k_m^i} (\varPsi_j(k_m^j - \tau) - h_j(k_m^j - \tau))] \\ &+ [h_{iv} (k+1) - h_{iv}(k)] / T \\ &+ K_1 (\varPsi_i(k) - h_i(k)) \tag{7} \end{aligned}ui?(k)?=K2?j∈Ni?∑?wij?[Ak?kmi?(Ψi?(kmi??τ)?hi?(kmi??τ))?Ak?kmi?(Ψj?(kmj??τ)?hj?(kmj??τ))]+[hiv?(k+1)?hiv?(k)]/T+K1?(Ψi?(k)?hi?(k))?(7)
先簡化一下
ui(k)=K2∑j∈Niwij[A(Ψi?hi)?A(Ψj?hj)]+[hiv(k+1)?hiv(k)]/T+K1(Ψi(k)?hi(k))(7)\begin{aligned} u_i(k) &= K_2 \sum_{j\in N_i} w_{ij} [A (\varPsi_i - h_i) - A (\varPsi_j - h_j)] \\ &+ [h_{iv} (k+1) - h_{iv}(k)] / T \\ &+ K_1 (\varPsi_i(k) - h_i(k)) \tag{7} \end{aligned}ui?(k)?=K2?j∈Ni?∑?wij?[A(Ψi??hi?)?A(Ψj??hj?)]+[hiv?(k+1)?hiv?(k)]/T+K1?(Ψi?(k)?hi?(k))?(7)
本質上還是個普通的分布式協議,加上了個期望速度補償項,還有個啥暫時還不知道。
寫了下程序,明白了,回來再補充下,最后一項就是自身與期望編隊的誤差。
接下來看一下事件觸發機制。
fi(k,ei(k))=∥ei(k)∥?cαk(8)f_i(k, e_i(k)) = \| e_i(k) \| - c \alpha^k \tag{8}fi?(k,ei?(k))=∥ei?(k)∥?cαk(8)
ei(k)=Ak?kmi(Ψi(kmi?τ)?hi(kmi?τ))?(Ψi(k)?hi(k))e_i(k) = A^{k - k_m^i} (\varPsi_i(k_m^i - \tau) - h_i(k_m^i - \tau)) - (\varPsi_i(k) - h_i(k))ei?(k)=Ak?kmi?(Ψi?(kmi??τ)?hi?(kmi??τ))?(Ψi?(k)?hi?(k))
B. Stability analysis
IV. Simulation
t = 30s 時的仿真效果
t = 50s 時的仿真效果
V. Conclusion
總結
以上是生活随笔為你收集整理的【Paper】2020_Event-Triggered Time-Varying Formation Control for Discrete-Time Multi-Agent Systems wit的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【Matlab】利用 LMI 解矩阵不等
- 下一篇: 【Paper】2013_Cooperat