模糊综合评价模型原理及matlab实现
資料來源:微信公眾號《數(shù)學(xué)建模學(xué)習(xí)交流》
清風(fēng)老師系列建模視頻鏈接(B站):模糊綜合評價
MATLAB入門:matlab入門課
目錄
1. 概述
?2. 經(jīng)典集合和模糊集合的基本概念
2.1 經(jīng)典集合和特征函數(shù)
2.2 模糊集合和隸屬函數(shù)
3. 隸屬函數(shù)的三種確定方法
3.1 模糊統(tǒng)計(jì)法?
3.2 借助已有的客觀尺度
?4. 應(yīng)用:模糊綜合評價(評判)
4.1 評價問題概述
4.2 一級模糊綜合評價模型
4.2.1 一級模糊綜合評判模型在人事考核中的應(yīng)用
4.2.2 實(shí)例計(jì)算?
4.3.3 matlab代碼實(shí)現(xiàn)
4.3 二級模糊綜合評價模型
4.3.1 原理
4.3.2 實(shí)例計(jì)算——獎學(xué)金評定
4.3.3?matlab代碼實(shí)現(xiàn)
1. 概述
模糊性與確定性是相反的概念。比如高和帥,不同的人有不同的看法,比較具有模糊性,需要計(jì)算隸屬度才能客觀的說明帥。隸屬度是【0,1】之間的數(shù),比如小明的帥的隸屬度為0.8,那小明就比較帥,隸屬度越高越說明他帥。?
?2. 經(jīng)典集合和模糊集合的基本概念
2.1 經(jīng)典集合和特征函數(shù)
2.2 模糊集合和隸屬函數(shù)
?需要注意的是zadeh表示法中的“+”并不是指的加減乘除運(yùn)算中的加,只是一種記錄方式。
偏小型指的是越小越好的集合,中間型是位于中間的比較好,偏大型指越大越好的集合。
3. 隸屬函數(shù)的三種確定方法
3.1 模糊統(tǒng)計(jì)法?
?數(shù)學(xué)建模競賽中一般用后面兩種方法,但是比如問卷調(diào)查類的一般就是用模糊統(tǒng)計(jì)法。比如滿意度、支持度等的計(jì)算,可以直接通過問卷統(tǒng)計(jì)得到模糊綜合評判矩陣(例如:后面講的《一級模糊綜合評判在人事考核中的應(yīng)用》中用的就是這種方法)。
比如對商品包裝這一個問題的滿意度進(jìn)行調(diào)查,共對100人進(jìn)行調(diào)查,發(fā)現(xiàn)不滿意——滿意五個評語選擇的人數(shù)分別為20,25,30,10,15.則商品包裝R1=[20/100 25/100 30/100 10/100 15/100]。類似于這樣的計(jì)算,把所有問題的Ri算出來,就構(gòu)成了模糊綜合評判矩陣。類似于這種矩陣R:
參考文獻(xiàn):?
| [1]李芳,何思俊,支錦亦,王超,向澤銳.基于AHP-熵權(quán)法的高速列車乘客車廂設(shè)計(jì)滿意度評價[J].機(jī)械設(shè)計(jì),2020,37(02):121-125. |
| [2]王江艷,桑發(fā)瓊,邵紅林,龍鑫,何云驁.高校食堂顧客滿意度的模糊綜合評價法[J].現(xiàn)代商貿(mào)工業(yè),2020,41(02):54-55. |
3.2 借助已有的客觀尺度
?比如如何評價設(shè)備是否完好,可以計(jì)算設(shè)備完好率作為隸屬度,計(jì)算出的結(jié)果越接近于1,說明設(shè)備完好程度越高。
3.3 指派法
幾種常用的隸屬度函數(shù):https://wenku.baidu.com/view/35b005c5910ef12d2af9e76b.html
?4. 應(yīng)用:模糊綜合評價(評判)
4.1 評價問題概述
4.2 一級模糊綜合評價模型
4.2.1 一級模糊綜合評判模型在人事考核中的應(yīng)用
4.2.2 實(shí)例計(jì)算?
4.3.3 matlab代碼實(shí)現(xiàn)
%% 模糊評判矩陣 R = [0.1 0.5 0.4 0 00.2 0.5 0.2 0.1 00.2 0.5 0.3 0 00.2 0.6 0.2 0 0] %% 各因素的權(quán)重 A = [0.25 0.2 0.25 0.3] %% 隸屬度計(jì)算 B = A*R結(jié)果:
4.3 二級模糊綜合評價模型
4.3.1 原理
簡言之,就是將二級看成一級來算。比如后面的例子,可以將專業(yè)課成績和非專業(yè)課成績單獨(dú)算一個隸屬度B1,看成學(xué)習(xí)成績的隸屬度。同樣計(jì)算出競賽成績、個人榮譽(yù)和志愿服務(wù)的隸屬度B2、B3、B4。最后組合成新的模糊綜合評判矩陣R:
?然后用四個一級指標(biāo)的權(quán)重A 和R相乘即可。
4.3.2 實(shí)例計(jì)算——獎學(xué)金評定
4.3.3?matlab代碼實(shí)現(xiàn)
%% 模糊評判矩陣 R1 = [0.8 0.2 0; 0.7 0.3 0] % 學(xué)習(xí)成績的模糊綜合評判矩陣 R2 = [0 0 1; 0.5 0.5 0; 0 0.6 0.4] % 競賽成績 %R3 = [] R4=[] 這里就不舉例計(jì)算了 %% 各因素的權(quán)重 A = [0.4 0.3 0.2 0.1];% 一級指標(biāo) A1 = [0.6 0.4]; %二級指標(biāo):學(xué)習(xí)成績 A2 = [0.5 0.3 0.2];%競賽成績 A3 = [0.5 0.3 0.2];%個人榮譽(yù) A4 = [1];%志愿服務(wù) %% 二級指標(biāo)的隸屬度計(jì)算 B1 = A1*R1 B2 = A2*R2 %直接假設(shè)B3 B4 的值,就不用A3*R3 A4*R4計(jì)算了 B3 = [0.4 0.2 0.4] B4 = [0.1 0.8 0.1]%% 一級指標(biāo)的模糊綜合評判矩陣 R = [B1;B2;B3;B4] %% 一級指標(biāo)的隸屬度計(jì)算 B = A*R總結(jié)
以上是生活随笔為你收集整理的模糊综合评价模型原理及matlab实现的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Java并发中常用同步工具类
- 下一篇: 翻译记忆软件:Trados 7/2006