SP5971 LCMSUM - LCM Sum
SP5971 LCMSUM - LCM Sum
思路
∑i=1nlcm(i,n)\sum_{i = 1}^{n}lcm(i, n)i=1∑n?lcm(i,n)
=>∑i=1ningcd(i,n)=> \sum_{i = 1}^{n}\frac{i n}{gcd(i, n)}=>i=1∑n?gcd(i,n)in?
=>n∑i=1nigcd(i,n)=> n\sum_{i = 1}^{n}\frac{i}{gcd(i, n)}=>ni=1∑n?gcd(i,n)i?
我們按照P2303 [SDOI2012] Longge的思路枚舉gcd(i,n)gcd(i, n)gcd(i,n)
=>n∑d∣n∑i=1nid(gcd(i,n)==1)=>n\sum_{d\mid n} \sum_{i = 1}^{n} \frac{i}ze8trgl8bvbq(gcd(i, n) == 1)=>nd∣n∑?i=1∑n?di?(gcd(i,n)==1)
=>n∑d∣n∑i=1ndi(gcd(i,nd)==1)=>n\sum_{d\mid n}\sum_{i = 1}^{\frac{n}ze8trgl8bvbq} i(gcd(i, \frac{n}ze8trgl8bvbq) == 1)=>nd∣n∑?i=1∑dn??i(gcd(i,dn?)==1)
這個式子就熟悉了∑i=1ni(gcd(i,n)==1)=n?(n)2\sum_{i = 1} ^{n} i(gcd(i, n) == 1) = \frac{n\phi(n)}{2}∑i=1n?i(gcd(i,n)==1)=2n?(n)?,給定一個整數nnn小于nnn的數并且與nnn互質的數的和是這個式子,所以上式變成
=>=>n∑d∣nd?(d)2=>=>n\sum_{d\mid n}\frac{d\phi(d)}{2}=>=>nd∣n∑?2d?(d)?
所以我們只要枚舉nnn的約數就行了。
這里還存在一個問題,對于gcd=d=1gcd = d = 1gcd=d=1的時候,我們統計的答案是沒用貢獻的,所以我們還要加上lcm(1,n)=nlcm(1, n) = nlcm(1,n)=n得到我們最后的答案,
這里我整體復雜度是O(n)+TnO(n) + T\sqrt nO(n)+Tn?,先用素數篩篩選出所有的?(i)\phi(i)?(i),然后再每次計算答案。
第一道自己推出來的數學題,難得啊!!!
代碼
/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) // #include <iostream> // #include <algorithm> // #include <stdlib.h> // #include <cmath> // #include <vector> // #include <cstdio> #include <bits/stdc++.h> #define mp make_pair #define pb push_back #define endl '\n'using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }void print(ll x) {if(x < 10) {putchar(x + 48);return ;}print(x / 10);putchar(x % 10 + 48); }const int N = 1e6 + 10;int eular[N], n;vector<int> prime;bool st[N];void init() {st[0] = st[1] = 1;eular[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime.pb(i);eular[i] = i - 1;}for(int j = 0; j < prime.size() && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j]) {eular[i * prime[j]] = eular[i] * (prime[j] - 1);}else {eular[i * prime[j]] = eular[i] * prime[j];break;}}} }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();int T = read();while(T--) {int n = read();ll ans = 0;for(int i = 1; i * i <= n; i++) {if(n % i == 0) {ans += 1ll * i * eular[i] / 2;if(i * i != n) {ans += 1ll * n / i * eular[n / i] / 2;}}cout << ans << endl;}printf("%lld\n", 1ll * n * ans + n);}return 0; }總結
以上是生活随笔為你收集整理的SP5971 LCMSUM - LCM Sum的全部內容,希望文章能夠幫你解決所遇到的問題。