TVM darknet yolov3算子优化与量化代码的配置方法
TVM darknet yolov3算子優化與量化代碼的配置方法
使用以下接口函數
 ? tvm.relay.optimize
 ? quantize.quantize
 實際代碼:
convert nnvm to relay
print(“convert nnvm symbols into relay function…”)
 #from nnvm.to_relay import to_relay
 func, params = to_relay(sym, shape, ‘float32’, params=params)
optimization
print(“optimize relay graph…”)
 with tvm.relay.build_config(opt_level=2):
 func = tvm.relay.optimize(func, target, params)
quantize
print(“apply quantization…”)
 from tvm.relay import quantize
 with quantize.qconfig():
 func = quantize.quantize(func, params)
參考鏈接:
 https://github.com/makihiro/tvm_yolov3_sample/blob/master/yolov3_quantize_sample.py
完全代碼如下
 早期版本,可以使用新的TVM版本修改。
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
“License”); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
“”"
 Compile YOLO-V2 and YOLO-V3 in DarkNet Models
 
Author: Siju Samuel <https://siju-samuel.github.io/>_
This article is an introductory tutorial to deploy darknet models with TVM.
 All the required models and libraries will be downloaded from the internet by the script.
 This script runs the YOLO-V2 and YOLO-V3 Model with the bounding boxes
 Darknet parsing have dependancy with CFFI and CV2 library
 Please install CFFI and CV2 before executing this script
… code-block:: bash
pip install cffi
 pip install opencv-python
 “”"
numpy and matplotlib
import numpy as np
 import matplotlib.pyplot as plt
 import sys
tvm, relay
import tvm
 from tvm import te
 from tvm import relay
 from ctypes import *
 from tvm.contrib.download import download_testdata
 from tvm.relay.testing.darknet import darknetffi
 import tvm.relay.testing.yolo_detection
 import tvm.relay.testing.darknet
######################################################################
Choose the model
-----------------------
Models are: ‘yolov2’, ‘yolov3’ or ‘yolov3-tiny’
Model name
MODEL_NAME = “yolov3”
######################################################################
Download required files
-----------------------
Download cfg and weights file if first time.
CFG_NAME = MODEL_NAME + “.cfg”
 WEIGHTS_NAME = MODEL_NAME + “.weights”
 REPO_URL = “https://github.com/dmlc/web-data/blob/main/darknet/”
 CFG_URL = REPO_URL + “cfg/” + CFG_NAME + “?raw=true”
 WEIGHTS_URL = “https://pjreddie.com/media/files/” + WEIGHTS_NAME
cfg_path = download_testdata(CFG_URL, CFG_NAME, module=“darknet”)
 weights_path = download_testdata(WEIGHTS_URL, WEIGHTS_NAME, module=“darknet”)
Download and Load darknet library
if sys.platform in [“linux”, “linux2”]:
 DARKNET_LIB = “libdarknet2.0.so”
 DARKNET_URL = REPO_URL + “lib/” + DARKNET_LIB + “?raw=true”
 elif sys.platform == “darwin”:
 DARKNET_LIB = “libdarknet_mac2.0.so”
 DARKNET_URL = REPO_URL + “lib_osx/” + DARKNET_LIB + “?raw=true”
 else:
 err = “Darknet lib is not supported on {} platform”.format(sys.platform)
 raise NotImplementedError(err)
lib_path = download_testdata(DARKNET_URL, DARKNET_LIB, module=“darknet”)
DARKNET_LIB = darknetffi.dlopen(lib_path)
 net = DARKNET_LIB.load_network(cfg_path.encode(“utf-8”), weights_path.encode(“utf-8”), 0)
 dtype = “float32”
 batch_size = 1
data = np.empty([batch_size, net.c, net.h, net.w], dtype)
 shape_dict = {“data”: data.shape}
 print(“Converting darknet to relay functions…”)
 mod, params = relay.frontend.from_darknet(net, dtype=dtype, shape=data.shape)
 ######################################################################
Compile the model on NNVM
-------------------------
compile the model
local = True
if local:
 target = ‘llvm’
 ctx = tvm.cpu(0)
 else:
 target = ‘cuda’
 ctx = tvm.gpu(0)
data = np.empty([batch_size, net.c, net.h, net.w], dtype)
 shape = {‘data’: data.shape}
dtype_dict = {}
convert nnvm to relay
print(“convert nnvm symbols into relay function…”)
 #from nnvm.to_relay import to_relay
 func, params = to_relay(sym, shape, ‘float32’, params=params)
optimization
print(“optimize relay graph…”)
 with tvm.relay.build_config(opt_level=2):
 func = tvm.relay.optimize(func, target, params)
quantize
print(“apply quantization…”)
 from tvm.relay import quantize
 with quantize.qconfig():
 func = quantize.quantize(func, params)
Relay build
print(“Compiling the model…”)
 print(func.astext(show_meta_data=False))
 with tvm.relay.build_config(opt_level=3):
 graph, lib, params = tvm.relay.build(func, target=target, params=params)
Save the model
tmp = util.tempdir()
 lib_fname = tmp.relpath(‘model.tar’)
 lib.export_library(lib_fname)
NNVM
with nnvm.compiler.build_config(opt_level=2):
graph, lib, params = nnvm.compiler.build(sym, target, shape, dtype_dict, params)
#[neth, netw] = shape[‘data’][2:] # Current image shape is 608x608
 ######################################################################
######################################################################
Import the graph to Relay
-------------------------
compile the model
target = tvm.target.Target(“llvm”, host=“llvm”)
 dev = tvm.cpu(0)
 data = np.empty([batch_size, net.c, net.h, net.w], dtype)
 shape = {“data”: data.shape}
 print(“Compiling the model…”)
 with tvm.transform.PassContext(opt_level=3):
 lib = relay.build(mod, target=target, params=params)
[neth, netw] = shape[“data”][2:] # Current image shape is 608x608
 ######################################################################
Load a test image
-----------------
test_image = “dog.jpg”
 print(“Loading the test image…”)
 img_url = REPO_URL + “data/” + test_image + “?raw=true”
 img_path = download_testdata(img_url, test_image, “data”)
data = tvm.relay.testing.darknet.load_image(img_path, netw, neth)
 ######################################################################
Execute on TVM Runtime
----------------------
The process is no different from other examples.
from tvm.contrib import graph_executor
m = graph_executor.GraphModule(lib"default")
set inputs
m.set_input(“data”, tvm.nd.array(data.astype(dtype)))
execute
print(“Running the test image…”)
detection
thresholds
thresh = 0.5
 nms_thresh = 0.45
m.run()
get outputs
tvm_out = []
 if MODEL_NAME == “yolov2”:
 layer_out = {}
 layer_out[“type”] = “Region”
 # Get the region layer attributes (n, out_c, out_h, out_w, classes, coords, background)
 layer_attr = m.get_output(2).numpy()
 layer_out[“biases”] = m.get_output(1).numpy()
 out_shape = (layer_attr[0], layer_attr[1] // layer_attr[0], layer_attr[2], layer_attr[3])
 layer_out[“output”] = m.get_output(0).numpy().reshape(out_shape)
 layer_out[“classes”] = layer_attr[4]
 layer_out[“coords”] = layer_attr[5]
 layer_out[“background”] = layer_attr[6]
 tvm_out.append(layer_out)
elif MODEL_NAME == “yolov3”:
 for i in range(3):
 layer_out = {}
 layer_out[“type”] = “Yolo”
 # Get the yolo layer attributes (n, out_c, out_h, out_w, classes, total)
 layer_attr = m.get_output(i * 4 + 3).numpy()
 layer_out[“biases”] = m.get_output(i * 4 + 2).numpy()
 layer_out[“mask”] = m.get_output(i * 4 + 1).numpy()
 out_shape = (layer_attr[0], layer_attr[1] // layer_attr[0], layer_attr[2], layer_attr[3])
 layer_out[“output”] = m.get_output(i * 4).numpy().reshape(out_shape)
 layer_out[“classes”] = layer_attr[4]
 tvm_out.append(layer_out)
elif MODEL_NAME == “yolov3-tiny”:
 for i in range(2):
 layer_out = {}
 layer_out[“type”] = “Yolo”
 # Get the yolo layer attributes (n, out_c, out_h, out_w, classes, total)
 layer_attr = m.get_output(i * 4 + 3).numpy()
 layer_out[“biases”] = m.get_output(i * 4 + 2).numpy()
 layer_out[“mask”] = m.get_output(i * 4 + 1).numpy()
 out_shape = (layer_attr[0], layer_attr[1] // layer_attr[0], layer_attr[2], layer_attr[3])
 layer_out[“output”] = m.get_output(i * 4).numpy().reshape(out_shape)
 layer_out[“classes”] = layer_attr[4]
 tvm_out.append(layer_out)
 thresh = 0.560
do the detection and bring up the bounding boxes
img = tvm.relay.testing.darknet.load_image_color(img_path)
 _, im_h, im_w = img.shape
 dets = tvm.relay.testing.yolo_detection.fill_network_boxes(
 (netw, neth), (im_w, im_h), thresh, 1, tvm_out
 )
 last_layer = net.layers[net.n - 1]
 tvm.relay.testing.yolo_detection.do_nms_sort(dets, last_layer.classes, nms_thresh)
coco_name = “coco.names”
 coco_url = REPO_URL + “data/” + coco_name + “?raw=true”
 font_name = “arial.ttf”
 font_url = REPO_URL + “data/” + font_name + “?raw=true”
 coco_path = download_testdata(coco_url, coco_name, module=“data”)
 font_path = download_testdata(font_url, font_name, module=“data”)
with open(coco_path) as f:
 content = f.readlines()
names = [x.strip() for x in content]
tvm.relay.testing.yolo_detection.show_detections(img, dets, thresh, names, last_layer.classes)
 tvm.relay.testing.yolo_detection.draw_detections(
 font_path, img, dets, thresh, names, last_layer.classes
 )
 plt.imshow(img.transpose(1, 2, 0))
 plt.show()
參考鏈接:
 https://github.com/makihiro/tvm_yolov3_sample/blob/master/yolov3_quantize_sample.py
 https://tvm.apache.org/docs/tutorials/frontend/from_darknet.html#sphx-glr-tutorials-frontend-from-darknet-py
總結
以上是生活随笔為你收集整理的TVM darknet yolov3算子优化与量化代码的配置方法的全部內容,希望文章能夠幫你解決所遇到的問題。
                            
                        - 上一篇: 英特尔 QLC 3D NAND 数据存储
 - 下一篇: LLVM Backend技术