SSE4.1和SSE4.2 Intrinsics各函数介绍
生活随笔
收集整理的這篇文章主要介紹了
SSE4.1和SSE4.2 Intrinsics各函数介绍
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
SIMD相關頭文件包括:
//#include <ivec.h>//MMX
//#include <fvec.h>//SSE(also include ivec.h)
//#include <dvec.h>//SSE2(also include fvec.h)#include <mmintrin.h> //MMX
#include <xmmintrin.h> //SSE(include mmintrin.h)
#include <emmintrin.h> //SSE2(include xmmintrin.h)
#include <pmmintrin.h> //SSE3(include emmintrin.h)
#include <tmmintrin.h>//SSSE3(include pmmintrin.h)
#include <smmintrin.h>//SSE4.1(include tmmintrin.h)
#include <nmmintrin.h>//SSE4.2(include smmintrin.h)
#include <wmmintrin.h>//AES(include nmmintrin.h)
#include <immintrin.h>//AVX(include wmmintrin.h)
#include <intrin.h>//(include immintrin.h)
mmintrin.h為MMX 頭文件,其中__m64的定義為:
typedef union __declspec(intrin_type) _CRT_ALIGN(8) __m64
{unsigned __int64 m64_u64;float m64_f32[2];__int8 m64_i8[8];__int16 m64_i16[4];__int32 m64_i32[2]; __int64 m64_i64;unsigned __int8 m64_u8[8];unsigned __int16 m64_u16[4];unsigned __int32 m64_u32[2];
} __m64;
xmmintrin.h為SSE 頭文件,此頭文件里包含MMX頭文件,其中__m128的定義為:
typedef union __declspec(intrin_type) _CRT_ALIGN(16) __m128 {float m128_f32[4];unsigned __int64 m128_u64[2];__int8 m128_i8[16];__int16 m128_i16[8];__int32 m128_i32[4];__int64 m128_i64[2];unsigned __int8 m128_u8[16];unsigned __int16 m128_u16[8];unsigned __int32 m128_u32[4];} __m128;
emmintrin.h為SSE2頭文件,此頭文件里包含SSE頭文件,其中__m128i和__m128d的定義為:
typedef union __declspec(intrin_type) _CRT_ALIGN(16) __m128i {__int8 m128i_i8[16];__int16 m128i_i16[8];__int32 m128i_i32[4]; __int64 m128i_i64[2];unsigned __int8 m128i_u8[16];unsigned __int16 m128i_u16[8];unsigned __int32 m128i_u32[4];unsigned __int64 m128i_u64[2];
} __m128i;typedef struct __declspec(intrin_type) _CRT_ALIGN(16) __m128d {double m128d_f64[2];
} __m128d;
smmintrin.h為SSE4.1頭文件,其文件中各函數(shù)的介紹:
/*Integer blend instructions - select data from 2 sourcesusing constant/variable mask*///v1=(v10, v11, ..., v17), v2=(v20, v21, ..., v27)//mask:If the corresponding flag bit is 0, the value is selected from parameter v1.//Otherwise the value is from parameter v2.//則r0=(mask0 == 0) ? v10 : v20,...,r7= (mask7 == 0) ? v17 : v27extern __m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask);//v1=(v10, v11, ..., v115), v2=(v20, v21, ..., v215), mask=(mask1, ..., mask15)//則r0=(mask0 & 0x80) ? v20 : v10, ..., r15=(mask15 & 0x80) ? v215 : v115extern __m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask);/*Float single precision blend instructions - select datafrom 2 sources using constant/variable mask *///v1=(v10, v11, v12, v13), v2=(v20, v21, v22, v23)//則r0=(mask0 == 0) ? v10 : v20,..., r3= (mask3 == 0) ? v13 : v23extern __m128 _mm_blend_ps (__m128 v1, __m128 v2, const int mask);//v1=(v10, v11, v12, v13), v2=(v20, v21, v22, v23)//則r0= (v30 & 0x80000000) ? v20 : v10,...,r3= (v33 & 0x80000000) ? v23 : v13extern __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3);/*Float double precision blend instructions - select datafrom 2 sources using constant/variable mask*///v1=(v10, v11), v2=(v20, v21)//則r0 = (mask0 == 0) ? v10 : v20, r1 = (mask1 == 0) ? v11 : v21extern __m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask);//v1=(v10, v11), v2=(v20, v21)//則r0 = (v30 & 0x8000000000000000) ? v20 : v10,//r1 = (v31 & 0x8000000000000000) ? v21 : v11extern __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3);/*Dot product instructions with mask-defined summing and zeroingof result's parts*///val1=(val10, ..., val13), val2=(val20,...,val23)/*則tmp0 := (mask4 == 1) ? (val10 * val20) : +0.0tmp1 := (mask5 == 1) ? (val11 * val21) : +0.0tmp2 := (mask6 == 1) ? (val12 * val22) : +0.0tmp3 := (mask7 == 1) ? (val13 * val23) : +0.0tmp4 := tmp0 + tmp1 + tmp2 + tmp3r0 := (mask0 == 1) ? tmp4 : +0.0r1 := (mask1 == 1) ? tmp4 : +0.0r2 := (mask2 == 1) ? tmp4 : +0.0r3 := (mask3 == 1) ? tmp4 : +0.0 */extern __m128 _mm_dp_ps(__m128 val1, __m128 val2, const int mask);//val1=(val10, val11), val2=(val20, val21)/*則tmp0 := (mask4 == 1) ? (val10 * val20) : +0.0tmp1 := (mask5 == 1) ? (val11 * val21) : +0.0tmp2 := tmp0 + tmp1r0 := (mask0 == 1) ? tmp2 : +0.0r1 := (mask1 == 1) ? tmp2 : +0.0 */extern __m128d _mm_dp_pd(__m128d val1, __m128d val2, const int mask);/*Packed integer 64-bit comparison, zeroing or filling with onescorresponding parts of result *///val1=(val10, val11), val2=(val20, val21)//則r0 = (val10 == val20) ? 0xffffffffffffffff : 0,//r1 = (val11 == val21) ? 0xffffffffffffffff : 0extern __m128i _mm_cmpeq_epi64(__m128i val1, __m128i val2);/* Min/max packed integer instructions*///val1=(val10,...,val115), val2=(val20,...,val215)//則r0 = (val10 < val20) ? val10 : val20, ...,//r15 = (val115 < val215) ? val115 : val215extern __m128i _mm_min_epi8 (__m128i val1, __m128i val2);//val1=(val10,...,val115), val2=(val20,...,val215)//則r0 = (val10 > val20) ? val10 : val20, ...,//r15 = (val115 > val215) ? val115 : val215extern __m128i _mm_max_epi8 (__m128i val1, __m128i val2);//val1=(val10,...,val17), val2=(val20,...,val27), eight 16-bit unsigned integers//則r0 = (val10 < val20) ? val10 : val20, ...,//r7 = (val17 < val27) ? val17 : val27extern __m128i _mm_min_epu16(__m128i val1, __m128i val2);//val1=(val10,...,val17), val2=(val20,...,val27),eight 16-bit unsigned integers//則r0 = (val10 > val20) ? val10 : val20, ...,//r7 = (val17 > val27) ? val17 : val27extern __m128i _mm_max_epu16(__m128i val1, __m128i val2);//val1=(val10,...,val13), val2=(val20,...,val23)//則r0 = (val10 < val20) ? val10 : val20, ...,//r3 = (val13 < val23) ? val13 : val23extern __m128i _mm_min_epi32(__m128i val1, __m128i val2);//val1=(val10,...,val13), val2=(val20,...,val23)//則r0 = (val10 > val20) ? val10 : val20, ...,//r3 = (val13 > val23) ? val13 : val23extern __m128i _mm_max_epi32(__m128i val1, __m128i val2);//val1=(val10,...,val13), val2=(val20,...,val23), four 32-bit unsigned integers//則r0 = (val10 < val20) ? val10 : val20, ...,//r3 = (val13 < val23) ? val13 : val23extern __m128i _mm_min_epu32(__m128i val1, __m128i val2);//val1=(val10,...,val13), val2=(val20,...,val23), four 32-bit unsigned integers//則r0 = (val10 > val20) ? val10 : val20, ...,//r3 = (val13 > val23) ? val13 : val23extern __m128i _mm_max_epu32(__m128i val1, __m128i val2);/*Packed integer 32-bit multiplication with truncationof upper halves of results*///a=(a0,...,a3), b=(b0,...,b3), 則r0=a0 * b0, ..., r3=a3 * b3//Only the lower 32-bits of each product are savedextern __m128i _mm_mullo_epi32(__m128i a, __m128i b);/*Packed integer 32-bit multiplication of 2 pairs of operandsproducing two 64-bit results *///a=(a0,a1,a2,a3), b=(b0,b1,b2,b3)//r0=low_half(a0*b0), r1=high_half(a0*b0),r2=low_half(a2*b2), r3=high_half(a2*b2)//The upper 32-bits of each quadword of the input parameters are not usedextern __m128i _mm_mul_epi32(__m128i a, __m128i b);/*Packed integer 128-bit bitwise comparison.return 1 if (val 'and' mask) == 0*///則r = (mask & val) == 0, Generates a return value of 0 or 1extern int _mm_testz_si128(__m128i mask, __m128i val);/*Packed integer 128-bit bitwise comparison.return 1 if (val 'and_not' mask) == 0 *///則r=1 if all the bits set in val are set in mask; otherwise 0//Generates a return value of 0 or 1extern int _mm_testc_si128(__m128i mask, __m128i val);/*Packed integer 128-bit bitwise comparisonZF = ((val 'and' mask) == 0) CF = ((val 'and_not' mask) == 0)return 1 if both ZF and CF are 0 *///則 ZF := (mask & s2) == 0,CF := (~mask & s2) == 0, r = ~ZF & ~CF//Generates a return value of 0 or 1extern int _mm_testnzc_si128(__m128i mask, __m128i s2);/*Insert single precision float into packed single precisionarray element selected by index.The bits [7-6] of the 3d parameter define src index,the bits [5-4] define dst index, and bits [3-0] define zeroingmask for dst *//* sx := ndx6-7sval := (sx == 0) ? src0 : ((sx == 1) ? src1 : ((sx == 2) ? src2 : src3))dx := ndx4-5r0 := (dx == 0) ? sval : dst0r1 := (dx == 1) ? sval : dst1r2 := (dx == 2) ? sval : dst2r3 := (dx == 3) ? sval : dst3zmask := ndx0-3r0 := (zmask0 == 1) ? +0.0 : r0r1 := (zmask1 == 1) ? +0.0 : r1r2 := (zmask2 == 1) ? +0.0 : r2r3 := (zmask3 == 1) ? +0.0 : r3 */extern __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx);/*Extract binary representation of single precision float frompacked single precision array element selected by index *///src=(src0, src1, src2, src3)//則r = (ndx == 0) ? src0 : ((ndx == 1) ? src1 : ((ndx == 2) ? src2 : src3))//Only the least significant two bits of ndx are usedextern int _mm_extract_ps(__m128 src, const int ndx);/*Insert integer into packed integer array elementselected by index *///則r0=(ndx == 0) ? s : dst0, ..., r15=(ndx == 15) ? s : dst15//Only the lowest 8 bits of s are used, //Only the least significant 4 bits of ndx are usedextern __m128i _mm_insert_epi8 (__m128i dst, int s, const int ndx);//則r0=(ndx == 0) ? s : dst0, ..., r3=(ndx == 3) ? s : dst3//Only the least significant 2 bits of ndx are interpretedextern __m128i _mm_insert_epi32(__m128i dst, int s, const int ndx);//則r0=(ndx == 0) ? s : dst0, r1=(ndx == 1) ? s : dst1//Only the least significant bit of ndx is interpretedextern __m128i _mm_insert_epi64(__m128i dst, __int64 s, const int ndx);/*Extract integer from packed integer array elementselected by index *///則r=(ndx == 0) ? src0 : ((ndx == 1) ? src1 : ...((ndx == 14) ? src14 : src15))//Only the least significant four bits of ndx are used//注意:The result is the unsigned equivalent of the appropriate 8-bits in parameter srcextern int _mm_extract_epi8 (__m128i src, const int ndx);//則r=(ndx == 0) ? src0 : ((ndx == 1) ? src1 : ((ndx == 2) ? src2 : src3))//Only the least significant two bits of ndx are used.extern int _mm_extract_epi32(__m128i src, const int ndx);//則r = (ndx == 0) ? src0 : src1//Only the least significant bit of parameter ndx is usedextern __int64 _mm_extract_epi64(__m128i src, const int ndx);/*Horizontal packed word minimum and its index inresult[15:0] and result[18:16] respectively *///The lowest order 16 bits are the minimum value found in parameter shortValues.//The second-lowest order 16 bits are the index of the minimum value //found in parameter shortValues.extern __m128i _mm_minpos_epu16(__m128i shortValues);/* Packed/single float double precision rounding *///則r0=RND(val0), r1=RND(val1),詳見參考文獻1extern __m128d _mm_round_pd(__m128d val, int iRoundMode);//則r0=RND(val0), r1=dst1, 詳見參考文獻1// The lowest 64 bits are the result of the rounding function on val.//The higher order 64 bits are copied directly from input parameter dstextern __m128d _mm_round_sd(__m128d dst, __m128d val, int iRoundMode);/*Packed/single float single precision rounding *///則r0=RND(val0), r1=RND(val1), r2=RND(val2), r3=RND(val3),詳見參考文獻1extern __m128 _mm_round_ps(__m128 val, int iRoundMode);//則r0=RND(val0), r1=dst1, r2=dst2, r3=dst3, //The lowest 32 bits are the result of the rounding function on val.//The higher order 96 bits are copied directly from input parameter dstextern __m128 _mm_round_ss(__m128 dst, __m128 val, int iRoundMode);/*Packed integer sign-extension *///byteValues: A 128-bit parameter that contains four signed 8-bit integers//in the lower 32 bits, byteValues=(a0, a1, ..., a15)/*則r0 := a0r1 := (a0 < 0) ? 0xff : 0r2 := (a0 < 0) ? 0xff : 0r3 := (a0 < 0) ? 0xff : 0r4 := a1r5 := (a1 < 0) ? 0xff : 0r6 := (a1 < 0) ? 0xff : 0r7 := (a1 < 0) ? 0xff : 0r8 := a2r9 := (a2 < 0) ? 0xff : 0r10 := (a2 < 0) ? 0xff : 0r11 := (a2 < 0) ? 0xff : 0r12 := a3r13 := (a3 < 0) ? 0xff : 0r14 := (a3 < 0) ? 0xff : 0r15 := (a3 < 0) ? 0xff : 0 */extern __m128i _mm_cvtepi8_epi32 (__m128i byteValues);//shortValues: A 128-bit parameter that contains four signed 16-bit integers//in the lower 64 bits, shortValues=(a0, a1, ..., a7)/*則r0 := a0r1 := (a0 < 0) ? 0xffff : 0r2 := a1r3 := (a1 < 0) ? 0xffff : 0r4 := a2r5 := (a2 < 0) ? 0xffff : 0r6 := a3r7 := (a3 < 0) ? 0xffff : 0 */extern __m128i _mm_cvtepi16_epi32(__m128i shortValues);//byteValues: A 128-bit parameter that contains two signed 8-bit integers//in the lower 16 bits, byteValues=(a0, a1, ... , a15)/*則r0 := a0r1 := (a0 < 0) ? 0xff : 0r2 := (a0 < 0) ? 0xff : 0r3 := (a0 < 0) ? 0xff : 0r4 := (a0 < 0) ? 0xff : 0r5 := (a0 < 0) ? 0xff : 0r6 := (a0 < 0) ? 0xff : 0r7 := (a0 < 0) ? 0xff : 0r8 := a1r9 := (a1 < 0) ? 0xff : 0r10 := (a1 < 0) ? 0xff : 0r11 := (a1 < 0) ? 0xff : 0r12 := (a1 < 0) ? 0xff : 0r13 := (a1 < 0) ? 0xff : 0r14 := (a1 < 0) ? 0xff : 0r15 := (a1 < 0) ? 0xff : 0 */extern __m128i _mm_cvtepi8_epi64 (__m128i byteValues); //intValues: A 128-bit parameter that contains two signed 32-bit //integers in the lower 64 bits, intValues=(a0, a1, a2, a3)/*則r0 := a0r1 := (a0 < 0) ? 0xffffffff : 0r2 := a1r3 := (a1 < 0) ? 0xffffffff : 0*/extern __m128i _mm_cvtepi32_epi64(__m128i intValues);//shortValues:A 128-bit parameter that contains two signed 16-bit integers//in the lower 32 bits, shortValues=(a0, a1, ..., a7)/*則r0 := a0r1 := (a0 < 0) ? 0xffff : 0r2 := (a0 < 0) ? 0xffff : 0r3 := (a0 < 0) ? 0xffff : 0r4 := a1r5 := (a1 < 0) ? 0xffff : 0r6 := (a1 < 0) ? 0xffff : 0r7 := (a1 < 0) ? 0xffff : 0*/extern __m128i _mm_cvtepi16_epi64(__m128i shortValues);//byteValues:A 128-bit parameter that contains eight signed 8-bit integers //in the lower 64 bits, byteValues=(a0, a1, ..., a15)/*則r0 := a0r1 := (a0 < 0) ? 0xff : 0r2 := a1r3 := (a1 < 0) ? 0xff : 0...r14 := a7r15 := (a7 < 0) ? 0xff : 0*/extern __m128i _mm_cvtepi8_epi16 (__m128i byteValues);/*Packed integer zero-extension*///byteValues:A 128-bit parameter that contains four unsigned 8-bit integers//in the lower 32 bits, byteValues=(a0, a1, ... , a15)/*則r0 := a0r1 := 0r2 := 0r3 := 0r4 := a1r5 := 0r6 := 0r7 := 0r8 := a2r9 := 0r10 := 0r11 := 0r12 := a3r13 := 0r14 := 0r15 := 0*/extern __m128i _mm_cvtepu8_epi32 (__m128i byteValues);//shortValues:A 128-bit parameter that contains four unsigned 16-bit integers//in the lower 64 bits, shortValues=(a0, a1, ... , a7)/*則r0 := a0r1 := 0r2 := a1r3 := 0r4 := a2r5 := 0r6 := a3r7 := 0*/extern __m128i _mm_cvtepu16_epi32(__m128i shortValues);//shortValues:A 128-bit parameter that contains two unsigned 8-bit integers//in the lower 16 bits, shortValues=(a0, a1, ..., a15)/*則r0 := a0r1 := 0r2 := 0r3 := 0r4 := 0r5 := 0r6 := 0r7 := 0r8 := a1r9 := 0r10 := 0r11 := 0r12 := 0r13 := 0r14 := 0r15 := 0*/extern __m128i _mm_cvtepu8_epi64 (__m128i shortValues);//intValues:A 128-bit parameter that contains two unsigned 32-bit integers//in the lower 64 bits, intValues=(a0, a1, a2, a3)/*則r0 = a0r1 = 0r2 = a1r3 = 0*/extern __m128i _mm_cvtepu32_epi64(__m128i intValues);//shortValues:A 128-bit parameter that contains two unsigned 16-bit integers//in the lower 32 bits, shortValues=(a0, a1, ... , a7)/*則r0 := a0r1 := 0r2 := 0r3 := 0r4 := a1r5 := 0r6 := 0r7 := 0*/extern __m128i _mm_cvtepu16_epi64(__m128i shortValues);//byteValues:A 128-bit parameter that contains eight unsigned 8-bit integers //in the lower 64 bits, byteValues=(a0, a1, ... , a15)/*則r0 := a0r1 := 0r2 := a1r3 := 0...r14 := a7r15 := 0*/extern __m128i _mm_cvtepu8_epi16 (__m128i byteValues);/*Pack 8 double words from 2 operands into 8 words of resultwith unsigned saturation *///val1=(val10,...,vall3), val2=(val20, ..., val23)/*則r0 := (val10 < 0) ? 0 : ((val10 > 0xffff) ? 0xffff : val10)r1 := (val11 < 0) ? 0 : ((val11 > 0xffff) ? 0xffff : val11)r2 := (val12 < 0) ? 0 : ((val12 > 0xffff) ? 0xffff : val12)r3 := (val13 < 0) ? 0 : ((val13 > 0xffff) ? 0xffff : val13)r4 := (val20 < 0) ? 0 : ((val20 > 0xffff) ? 0xffff : val20)r5 := (val21 < 0) ? 0 : ((val21 > 0xffff) ? 0xffff : val21)r6 := (val22 < 0) ? 0 : ((val22 > 0xffff) ? 0xffff : val22)r7 := (val23 < 0) ? 0 : ((val23 > 0xffff) ? 0xffff : val23)*/extern __m128i _mm_packus_epi32(__m128i val1, __m128i val2);/*Sum absolute 8-bit integer difference of adjacent groups of 4 byteintegers in operands. Starting offsets within operands aredetermined by mask *///s1, s2: sixteen 8-bit unsigned integers// msk0, msk1, and msk2 are the three least significant bits of parameter msk/*則i = msk2 * 4j = msk0-1 * 4for (k = 0; k < 8; k = k + 1) {t0 = abs(s1[i + k + 0] - s2[j + 0])t1 = abs(s1[i + k + 1] - s2[j + 1])t2 = abs(s1[i + k + 2] - s2[j + 2])t3 = abs(s1[i + k + 3] - s2[j + 3])r[k] = t0 + t1 + t2 + t3}*/extern __m128i _mm_mpsadbw_epu8(__m128i s1, __m128i s2, const int msk);/** Load double quadword using non-temporal aligned hint*///This instruction loads data from a specified address.The memory source must be //16-byte aligned because the return value consists of sixteen bytes.則r=*v1extern __m128i _mm_stream_load_si128(__m128i* v1);
nmmintrin.h為SSE4.2頭文件,其文件中各函數(shù)的介紹:
/** Intrinsics for text/string processing.*///Either the computed mask of MaxSize bits or its expansion to a 128-bit parameter.//If the return value is expanded, each bit of the result mask is expanded to a //byte or a word.詳見參考文獻2extern __m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);//An integer between 0 and Maxsize. MaxSize when the computed mask equals 0.//Otherwise, the index of the leftmost or rightmost bit set to 1 in this mask.//詳見參考文獻2extern int _mm_cmpistri (__m128i a, __m128i b, const int mode);//Either the computed mask of MaxSize bits or its expansion to a 128-bit parameter.//If the return value is expanded, each bit of the result mask is expanded to //a byte or a word.詳見參考文獻3extern __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode);//An integer that ranges between 0 and MaxSize. Maxsize is returned when the //resulting bitmask is equal to 0. Otherwise, the index of either the leftmost//or rightmost bit set to 1 in this mask.詳見參考文獻3extern int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode);/** Intrinsics for text/string processing and reading values of EFlags.*///Returns one if the null character occurs in b. Otherwise, zero. When one is //returned, it means that b contains the ending fragment of the string that is //being compared.詳見參考文獻2extern int _mm_cmpistrz (__m128i a, __m128i b, const int mode);//Zero if the resulting mask is equal to zero. Otherwise, one.//詳見參考文獻2extern int _mm_cmpistrc (__m128i a, __m128i b, const int mode);//One if the null character occurs in a. Otherwise, zero. When one is returned,//it means that a contains the ending fragment of the string that is being compared.//詳見參考文獻2extern int _mm_cmpistrs (__m128i a, __m128i b, const int mode);//bit0 of the resulting bitmask.詳見參考文獻2extern int _mm_cmpistro (__m128i a, __m128i b, const int mode);//One if b is does not contain the null character and the resulting mask is //equal to zero. Otherwise, zero. 詳見參考文獻2extern int _mm_cmpistra (__m128i a, __m128i b, const int mode);//One if the absolute value of lb is less than MaxSize. Otherwise, zero.詳見參考文獻3extern int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);//Zero if the resulting mask is equal to zero. Otherwise, one.詳見參考文獻3extern int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);//One if the absolute value of la is less than MaxSize. Otherwise, zero.詳見參考文獻3extern int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);//bit0 of the resulting bitmask. 詳見參考文獻3extern int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);//One if the absolute value of lb is larger than or equal to MaxSize and the //resulting mask is equal to zero. Otherwise, zero.詳見參考文獻3extern int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);/** Packed integer 64-bit comparison, zeroing or filling with ones* corresponding parts of result*///val1=(val10, val11), val2=(val20, val21)//則,r0 = (val10 > val20) ? 0xffffffffffffffff : 0x0// r1 = (val11 > val21) ? 0xffffffffffffffff : 0x0extern __m128i _mm_cmpgt_epi64(__m128i val1, __m128i val2);/** Calculate a number of bits set to 1*///The number of bits set to one in vextern int _mm_popcnt_u32(unsigned int v);//The number of bits set to one in vextern __int64 _mm_popcnt_u64(unsigned __int64 v);/** Accumulate CRC32 (polynomial 0x11EDC6F41) value*///crc:循環(huán)冗余校驗碼,CRC32-C algorithm is based on polynomial 0x1EDC6F41,//r = crc + CRC-32C(v)extern unsigned int _mm_crc32_u8 (unsigned int crc, unsigned char v);//crc:循環(huán)冗余校驗碼,CRC32-C algorithm is based on polynomial 0x1EDC6F41,//r = crc + CRC-32C(v)extern unsigned int _mm_crc32_u16(unsigned int crc, unsigned short v);//crc:循環(huán)冗余校驗碼,CRC32-C algorithm is based on polynomial 0x1EDC6F41,//r = crc + CRC-32C(v)extern unsigned int _mm_crc32_u32(unsigned int crc, unsigned int v);//crc:循環(huán)冗余校驗碼,CRC32-C algorithm is based on polynomial 0x1EDC6F41,//r = crc + CRC-32C(v)extern unsigned __int64 _mm_crc32_u64(unsigned __int64 crc, unsigned __int64 v);
參考文獻:
1、http://msdn.microsoft.com/zh-cn/library/bb514044(v=vs.100).aspx?
2、http://msdn.microsoft.com/zh-cn/library/bb513993(v=vs.100).aspx?
3、http://msdn.microsoft.com/zh-cn/library/bb514048(v=vs.100).aspx?
總結
以上是生活随笔為你收集整理的SSE4.1和SSE4.2 Intrinsics各函数介绍的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 设计模式之工厂方法模式(Factory
- 下一篇: AES(Advanced Encrypt