matlab ga rbf,GA PSO优化的RBF神经网络
看了程序 我都看糊涂了??我不知道哪里是數據的輸入
求大牛指導一下啊
PSO優化的
%用粒子群算法優化RBF網絡權值
clear all
close all
G =250;? ?%迭代次數
n = 12;? ?%粒子維數
m = 20;? ?%種群規模
w = 0.1;??%算法參數
c1 = 2;? ?%算法參數
c2 = 2;? ?%算法參數
%取粒子的取值范圍
for i = 1:3
MinX(i) = 0.1*ones(1);
MaxX(i) = 3*ones(1);
end
for i = 4:1:9
MinX(i) = -3*ones(1);
MaxX(i) = 3*ones(1);
end
for i = 10:1:12
MinX(i) = -ones(1);
MaxX(i) = ones(1);
end
%初始化種群pop
pop = rands(m,n);
for i = 1:m
for j = 1:3
if pop(i,j) < MinX(j)
pop(i,j) = MinX(j);
end
if pop(i,j) > MaxX(j)
pop(i,j) = MaxX(j);
end
end
for j = 4:9
if pop(i,j) < MinX(j)
pop(i,j) = MinX(j);
end
if pop(i,j) > MaxX(j)
pop(i,j) = MaxX(j);
end
end
for j = 10:12
if pop(i,j) < MinX(j)
pop(i,j) = MinX(j);
end
if pop(i,j) > MaxX(j)
pop(i,j) = MaxX(j);
end
end
end
%初始化粒子速度
V = 0.1*rands(m,n);
BsJ = 0;
%根據初始化的種群計算個體好壞,找出群體最優和個體最優
for s = 1:m
indivi = pop(s,:);? ? %抽出個體
[indivi,BsJ] = fitness(indivi,BsJ);? ?%求出每個粒子對應的誤差
Error(s) = BsJ;
end
[OderEr,IndexEr] = sort(Error);? ? %對誤差進行排序
Error;
Errorleast = OderEr(1);? ? %求出最小誤差
for i = 1:m
if Errorleast == Error(i)
gbest = pop(i,:);? ?%找出最小誤差對應的個體極值gbest
break;
end
end
ibest = pop;? ?%把初始化的種群作為群體極值
%循環開始
for kg = 1:G
kg
for s = 1:m;
%個體有4%的變異概率
for j = 1:n
for i = 1:m
if rand(1)<0.04
pop(i,j) = rands(1);??%對個體pop(i,j)進行變異
end
end
end
%r1,r2為粒子群算法參數
r1 = rand(1);
r2 = rand(1);
% 速度更新
V(s,:) = w*V(s,:) + c1*r1*(ibest(s,:)-pop(s,:)) + c2*r2*(gbest-pop(s,:));
%個體更新
pop(s,:) = pop(s,:) + 0.3*V(s,:);
for j = 1:3
if pop(s,j) < MinX(j)
pop(s,j) = MinX(j);
end
if pop(s,j) > MaxX(j)
pop(s,j) = MaxX(j);
end
end
for j = 4:9
if pop(s,j) < MinX(j)
pop(s,j) = MinX(j);
end
if pop(s,j) > MaxX(j)
pop(s,j) = MaxX(j);
end
end
for j = 10:12
if pop(s,j) < MinX(j)
pop(s,j) = MinX(j);
end
if pop(s,j) > MaxX(j)
pop(s,j) = MaxX(j);
end
end
%求更新后的每個個體誤差,可看成適應度值
[pop(s,:),BsJ] = fitness(pop(s,:),BsJ);
error(s) = BsJ;
%根據適應度值對個體最優和群體最優進行更新
if error(s)
ibest(s,:) = pop(s,:);
Error(s) = error(s);
end
if error(s)
gbest = pop(s,:);
Errorleast = error(s);
end
end
Best(kg) = Errorleast;
end
plot(Best);
title('遺傳算法優化RBF網絡權值中最小誤差進化過程')
xlabel('進化次數');
ylabel('最小誤差');
save pfile1 gbest;
GA優化的
clear all
close all
%遺傳算法優化來訓練RBF網絡權值
%G為進化代數,Size為種群規模,CodeL為參數的二進制編碼長度
G = 250;
Size = 30;
CodeL = 10;
%確定每個參數的最大最小值
for i = 1:3
MinX(i) = 0.1*ones(1);
MaxX(i) = 3*ones(1);
end
for i = 4:1:9
MinX(i) = -3*ones(1);
MaxX(i) = 3*ones(1);
end
for i = 10:1:12
MinX(i) = -ones(1);
MaxX(i) = ones(1);
end
%初始化種群
E = round(rand(Size,12*CodeL));
BsJ = 0;
%進化開始
for kg = 1:1:G
time(kg) = kg
for s = 1:1:Size
m = E(s,:);? ? %取出其中個體
%把二進制表示的參數轉化為實數
for j = 1:1:12
y(j) = 0;
mj = m((j-1)*CodeL + 1:1:j*CodeL);
for i = 1:1:CodeL
y(j) = y(j) + mj(i)*2^(i - 1);
end
f(s,j) = (MaxX(j) - MinX(j))*y(j)/1023 + MinX(j);
end
p = f(s,:);
[p,BsJ] = fitness(p,BsJ);
BsJi(s) = BsJ;? ?? ?? ?? ? %記錄每個個體的總誤差
end
%對誤差排序,求出最好誤差
[OderJi,IndexJi] = sort(BsJi);
BestJ(kg) = OderJi(1);
BJ = BestJ(kg);
Ji = BsJi + 1e-10;
%對誤差取倒數,求出適應度值
fi = 1./Ji;? ? %適應度值
[Oderfi,Indexfi] = sort(fi);
Bestfi = Oderfi(Size);? ?? ?%最佳適應度值
BestS = E(Indexfi(Size),:);? ???%最佳個體
kg??%進化次數
p? ? %最佳個體
BJ? ?%最佳個體的誤差
%**************Step 2:選擇操作**********************%
fi_sum = sum(fi);
fi_Size = (Oderfi/fi_sum)*Size;
fi_S = floor(fi_Size);
kk = 1;
for i = 1:1:Size
for j = 1:1:fi_S(i)
TempE(kk,:) = E(Indexfi(i),:);
kk = kk + 1;
end
end
%***************Step 3:交叉操作***********************************%
pc = 0.60;
n = ceil(20*rand);
for i = 1:2:(Size-1)
temp = rand;
if pc>temp
for j = n:1:20
TempE(i,j) = E(i+1,j);
TempE(i+1,j) = E(i,j);
end
end
end
TempE(Size,:) = BestS;
E = TempE;
%***************Step 4:變異操作**********************************%
pm = 0.001 - [1:1:Size]*(0.001)/Size;
for i = 1:1:Size
for j = 1:1:12*CodeL
temp = rand;
if pm>temp
if TempE(i,j) == 0
TempE(i,j) = 1;
else
TempE(i,j) = 0;
end
end
end
end
%把最佳個體賦于種群中
TempE(Size,:) = BestS;
E = TempE;
end
Bestfi
BestS
fi
Best_J = BestJ(G)
figure(1)
plot(time,BestJ);
title('遺傳算法優化RBF網絡權值中最小誤差進化過程')
xlabel('進化次數');
ylabel('最小誤差');
save pfile p;
測試的程序
clear all
close all
%分別使用粒子群算法,遺傳算法和未經過優化權值的RBF網絡做預測
%
load pfile1 gbest;? ?%粒子群算法優化得到權值
load pfile p;? ?? ???%遺傳算法優化得到權值
%學習系數
alfa = 0.05;
xite = 0.85;
x = [0,0]';
for M=1:3
if M==1? ?%取粒子群算法進化的權值
b=[gbest(1);gbest(2);gbest(3)];
c=[gbest(4) gbest(5) gbest(6);
gbest(7) gbest(8) gbest(9)];
w=[gbest(10);gbest(11);gbest(12)];
elseif M==2? ?%取遺傳算法進化的權值
b=[p(1);p(2);p(3)];
c=[p(4) p(5) p(6);
p(7) p(8) p(9)];
w=[p(10);p(11);p(12)];
elseif M==3? ?%權值重新初始化
b=3*rand(3,1);
c=3*rands(2,3);
w=rands(3,1);
end
w_1 = w;w_2 = w_1;
c_1 = c;c_2 = c_1;
b_1 = b;b_2 = b_1;
y_1 = 0;
ts = 0.001;
for k = 1:1:1500
time(k) = k*ts;
%RBF網絡的輸入,控制量和系統上一個輸入量
u(k) = sin(5*2*pi*k*ts);
y(k) = u(k)^3 + y_1/(1 + y_1^2);
x(1) = u(k);
x(2) = y(k);
%網絡預測的輸入
for j = 1:1:3
h(j) = exp(-norm(x - c(:,j))^2/(2*b(j)*b(j)));
end
ym(M,k) = w_1'*h';
%預測輸出和實際輸出的誤差
e(M,k) = y(k) - ym(M,k);
%調整權值
d_w = 0*w;d_b = 0*b;d_c = 0*c;
for j = 1:1:3
d_w(j) = xite*e(M,k)*h(j);
d_b(j) = xite*e(M,k)*w(j)*h(j)*(b(j)^-3)*norm(x-c(:,j))^2;
for i = 1:1:2
d_c(i,j) = xite*e(M,k)*w(j)*h(j)*(x(i) - c(i,j))*(b(j)^-2);
end
end
w = w_1 + d_w + alfa*(w_1 - w_2);
b = b_1 + d_b + alfa*(b_1 - b_2);
c = c_1 + d_c + alfa*(c_1 - c_2);
y_1 = y(k);
w_2 = w_1;
w_1 = w;
c_2 = c_1;
c_1 = c;
b_2 = b_1;
b_1 = b;
end
end
figure(1)
plot(e(1,:));
hold on
plot(e(2,:),'r');
hold on
plot(e(3,:),'g');
title('各種算法對應的預測誤差')
legend('PSO_RBF優化誤差','GA_RBF優化誤差','RBF優化誤差')
xlabel('進化次數');
ylabel('預測誤差');
figure(2)
plot(y,'y');
hold on
plot(ym(1,:),'b');
hold on
plot(ym(2,:),'r');
hold on
plot(ym(3,:),'g');
title('各種算法對應的系統預測輸出')
legend('實際輸出','PSO_RBF預測輸出','GA_RBF預測輸出','RBF預測輸出')
xlabel('進化次數');
ylabel('預測誤差');
2012-9-5 22:50 上傳
點擊文件名下載附件
6.42 KB, 下載次數: 54133
程序
總結
以上是生活随笔為你收集整理的matlab ga rbf,GA PSO优化的RBF神经网络的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: java x86 模拟,Java模拟实现
- 下一篇: php引用数据库实例,PHP单例模式实例