UA OPTI570 量子力学30 Degenerate Stationary Perturbation Theory简介
UA OPTI570 量子力學(xué)30 Degenerate Stationary Perturbation Theory簡介
- 回顧:Nondegenerate Stationary Perturbation Theory
- 例:用Nondegenerate Stationary Perturbation Theory方法處理Degenerate Stationary Perturbation
- Degenerate Stationary Perturbation Theory總結(jié)
回顧:Nondegenerate Stationary Perturbation Theory
上一講介紹了Nondegenerate Stationary Perturbation Theory,它的作用是近似計算復(fù)雜Hamitonian的特征方程。假設(shè)H^=H0+λW^\hat H=H_0+\lambda \hat WH^=H0?+λW^,W^\hat WW^是一個已知的算符,λ\lambdaλ是一個絕對值遠小于1的實數(shù),λW^\lambda \hat WλW^被稱為small perturbation;H0H_0H0?是一個已知的哈密頓量,特征方程為
H0∣?ni?=En0∣?ni?,i=1,?,gnH_0|\phi_n^i \rangle = E_n^0 |\phi_n^i \rangle,i=1,\cdots,g_nH0?∣?ni??=En0?∣?ni??,i=1,?,gn?
定義H^\hat HH^的特征方程為
H^∣ψn,j?=En,j∣ψn,j?,j=1,?,gn\hat H |\psi_{n,j}\rangle = E_{n,j}|\psi_{n,j}\rangle,j=1,\cdots,g_nH^∣ψn,j??=En,j?∣ψn,j??,j=1,?,gn?
假設(shè)gn=1g_n=1gn?=1,稱這種Stationary Perturbation Theory為Nondegenerate Stationary Perturbation Theory,此時指標i,ji,ji,j可忽略,主要結(jié)論為
En≈En0+λ??n∣W^∣?n?+λ2∑p≠n∑i=1gp∣??pi∣W^∣?n?∣2En0?Ep0∣ψn?≈∣?n?+λ∑p≠n∑i=1gp??pi∣W^∣?n?En0?Ep0∣?pi?E_n\approx E_n^0+\lambda \langle \phi_n | \hat W | \phi_n \rangle + \lambda^2 \sum_{p \ne n}\sum_{i=1}^{g_p}\frac{|\langle \phi_p^i|\hat W | \phi_n \rangle|^2}{E_n^0-E_p^0} \\ |\psi_n \rangle \approx |\phi_n \rangle + \lambda \sum_{p \ne n}\sum_{i=1}^{g_p}\frac{\langle \phi_p^i|\hat W|\phi_n \rangle}{E_n^0-E_p^0}|\phi_p^i \rangleEn?≈En0?+λ??n?∣W^∣?n??+λ2p?=n∑?i=1∑gp??En0??Ep0?∣??pi?∣W^∣?n??∣2?∣ψn??≈∣?n??+λp?=n∑?i=1∑gp??En0??Ep0???pi?∣W^∣?n???∣?pi??
需要注意的是,雖然H0H_0H0?與本征值En0E_n^0En0?對應(yīng)的本征態(tài)不存在degeneracy,但是它與其他本征值Ep0,p≠nE_p^0,p \ne nEp0?,p?=n對應(yīng)的本征態(tài)可能存在degeneracy,上式中gpg_pgp?就代表index of denegeracy。
例:用Nondegenerate Stationary Perturbation Theory方法處理Degenerate Stationary Perturbation
Degenerate Stationary Perturbation Theory的思想就是用Nondegenerate Stationary Perturbation Theory分別處理i=1,?,gni=1,\cdots,g_ni=1,?,gn?的degeneracy,這里用一個例子說明Degenerate Stationary Perturbation Theory的思想。
考慮2-D isotropic Q.H.O.
H0=Px2+Py22m+12mw2(X2+Y2)H_0=\frac{P_x^2+P_y^2}{2m}+\frac{1}{2}mw^2(X^2+Y^2)H0?=2mPx2?+Py2??+21?mw2(X2+Y2)
假設(shè)perturbation為
W=λW^=λmw2XYW=\lambda \hat W = \lambda mw^2 XYW=λW^=λmw2XY
定義perturbed Hamitonian為H=H0+WH=H_0+WH=H0?+W,雖然HHH的特征方程可以準確推導(dǎo)出來,但為了說明perturbation theory,我們嘗試用近似方法。
首先我們來明確一下每個算符的大小的階,H0H_0H0?是量子諧振子的哈密頓量,它的scale自然是?w\hbar w?w,位置算符X,YX,YX,Y的scale自然是quantum length scale σ=?mw\sigma=\sqrt{\frac{\hbar}{mw}}σ=mw???,而mw2σ2=?wmw^2\sigma^2=\hbar wmw2σ2=?w,所以W^\hat WW^的scale也是?w\hbar w?w;
接下來我們選擇合適的表象,考慮哈密頓量的特征方程,最簡單的表象自然就是能量表象了,在能量表象中,H0H_0H0?的特征方程為
H0∣nx,ny?=Enx+ny0∣nx,ny?,Enx+ny0=?w(nx+ny+1)H_0|n_x,n_y \rangle=E_{n_x+n_y}^0 |n_x,n_y \rangle,E_{n_x+n_y}^0=\hbar w(n_x+n_y+1)H0?∣nx?,ny??=Enx?+ny?0?∣nx?,ny??,Enx?+ny?0?=?w(nx?+ny?+1)
能量表象下態(tài)空間的基為
{∣0,0?,∣1,0?,∣0,1?,∣2,0?,∣1,1?,∣0,2?,?}={∣?0?,∣?11?,∣?12?,∣?21?,∣?22?,∣?23?,?}\{|0,0\rangle,|1,0 \rangle,|0,1\rangle,|2,0 \rangle,|1,1 \rangle,|0,2 \rangle,\cdots\} \\ = \{|\phi_0 \rangle,|\phi_1^1 \rangle,|\phi_1^2 \rangle,|\phi_2^1 \rangle,|\phi_2^2 \rangle,|\phi_2^3 \rangle,\cdots\}{∣0,0?,∣1,0?,∣0,1?,∣2,0?,∣1,1?,∣0,2?,?}={∣?0??,∣?11??,∣?12??,∣?21??,∣?22??,∣?23??,?}
其中∣?0?|\phi_0 \rangle∣?0??表示基態(tài),∣?jkj?|\phi_j^{k_j} \rangle∣?jkj???中的jjj表示2維量子諧振子第jjj激發(fā)態(tài),kjk_jkj?表示表示2維量子諧振子第jjj激發(fā)態(tài)中X,YX,YX,Y方向的激發(fā)狀態(tài)。在能量表象下,
H0=?w?diag(1,2,2,3,3,3,?)=?w[122333?]W^=12?w(ax?ay?+ax?ay+axay?+axay)=?w[0101100201202020?]H_0=\hbar w \cdot diag(1,2,2,3,3,3,\cdots) = \hbar w \left[ \begin{matrix} 1 \\ & 2 \\ & & 2 \\ & & & 3 \\ & & & & 3 \\ & & & & & 3 \\ & & & & & & \cdots\end{matrix} \right] \\ \hat W =\frac{1}{2}\hbar w(a_x^{\dag}a_y^{\dag}+a_x^{\dag}a_y+a_xa_y^{\dag}+a_xa_y) \\ = \hbar w \left[ \begin{matrix} 0 & & & & 1 \\ & 0 & 1 \\ & 1 & 0 \\ & & & 0 & \sqrt{2} & 0 \\ 1& & & \sqrt{2} & 0 & \sqrt{2} \\ & & & 0 & \sqrt{2} & 0 \\ & & & & & & \cdots\end{matrix} \right]H0?=?w?diag(1,2,2,3,3,3,?)=?w???????????1?2?2?3?3?3??????????????W^=21??w(ax??ay??+ax??ay?+ax?ay??+ax?ay?)=?w???????????01?01?10?02?0?12?02??02?0??????????????
從這兩個矩陣表示中,我們很容易就能看出分塊的模式的,W^\hat WW^第一塊就是0,對應(yīng)基態(tài)下W^\hat WW^的矩陣表示,第二塊是[0110]\left[ \begin{matrix} 0 & 1 \\ 1 & 0\end{matrix} \right][01?10?],記為W^(1)\hat W^{(1)}W^(1),表示第一激發(fā)態(tài)對應(yīng)的W^\hat WW^的矩陣表示,依次類推,第nnn個分塊矩陣記為W^(n)\hat W^{(n)}W^(n),表示第n=nx+nyn=n_x+n_yn=nx?+ny?個激發(fā)態(tài)下W^\hat WW^的矩陣表示。用類似的分塊方法也可以對H0H_0H0?的矩陣表示做分塊,第nnn個分塊矩陣記為H0(n)H_0^{(n)}H0(n)?,表示第nnn個激發(fā)態(tài)下H0H_0H0?的矩陣表示。
進行分塊以后,在每個激發(fā)態(tài)下,我們都可以使用Nondegenerate Stationary Perturbation Theory近似計算H(n)=H0(n)+W^(n)H^{(n)}=H_0^{(n)}+\hat W^{(n)}H(n)=H0(n)?+W^(n)的特征方程。先計算基態(tài)的近似,
E0=E00+λ?0,0∣W^∣0,0?+λ2∑px,py≠0∣?px,py∣W^∣0,0?∣2E00?(px+py+1)?w=?w+0+(λ2?w)2?2?w=?w(1?λ28)∣ψ0?=∣0,0??λ4∣1,1??Normalization∣0,0??λ4∣1,1?1+λ216\begin{aligned}E_0 & = E_0^0+\lambda \langle 0,0|\hat W |0,0 \rangle + \lambda^2 \sum_{p_x,p_y \ne 0} \frac{|\langle p_x,p_y |\hat W |0,0\rangle|^2}{E_0^0-(p_x+p_y+1)\hbar w} \\ & = \hbar w+0+\frac{(\frac{\lambda}{2}\hbar w)^2}{-2 \hbar w} = \hbar w\left(1-\frac{\lambda^2}{8}\right)\end{aligned} \\ \begin{aligned} |\psi_0 \rangle = |0,0\rangle-\frac{\lambda}{4}|1,1\rangle \Rightarrow_{Normalization} \frac{ |0,0\rangle-\frac{\lambda}{4}|1,1\rangle}{\sqrt{1+\frac{\lambda^2}{16}}} \end{aligned}E0??=E00?+λ?0,0∣W^∣0,0?+λ2px?,py??=0∑?E00??(px?+py?+1)?w∣?px?,py?∣W^∣0,0?∣2?=?w+0+?2?w(2λ??w)2?=?w(1?8λ2?)?∣ψ0??=∣0,0??4λ?∣1,1??Normalization?1+16λ2??∣0,0??4λ?∣1,1???
然后計算第一激發(fā)態(tài),第一激發(fā)態(tài)有兩種量子態(tài),分別表示XXX激發(fā)與YYY激發(fā),所以對應(yīng)兩種能量本征值,E1,1,E1,2E_{1,1}, E_{1,2}E1,1?,E1,2?,它們等于E10E_1^0E10?加上W(1)W^{(1)}W(1)的本征值,其中W=λ?w/2[0110]W=\lambda \hbar w/2 \left[ \begin{matrix} 0 & 1 \\ 1 & 0\end{matrix} \right]W=λ?w/2[01?10?],本征值為±λ?w2\pm \frac{\lambda \hbar w}{2}±2λ?w?,本征態(tài)為∣1,0?±∣0,1?2\frac{|1,0 \rangle \pm |0,1 \rangle}{\sqrt{2}}2?∣1,0?±∣0,1??,所以
E1,1=2?w?12λ?w,∣ψ1,1?=∣1,0??∣0,1?2E1,2=2?w+12λ?w,∣ψ1,2?=∣1,0?+∣0,1?2E_{1,1}=2\hbar w-\frac{1}{2}\lambda \hbar w,|\psi_{1,1} \rangle=\frac{|1,0 \rangle - |0,1 \rangle}{\sqrt{2}} \\ E_{1,2}=2\hbar w+\frac{1}{2}\lambda \hbar w,|\psi_{1,2} \rangle=\frac{|1,0 \rangle+ |0,1 \rangle}{\sqrt{2}}E1,1?=2?w?21?λ?w,∣ψ1,1??=2?∣1,0??∣0,1??E1,2?=2?w+21?λ?w,∣ψ1,2??=2?∣1,0?+∣0,1??
接下來是第二激發(fā)態(tài),操作方法與計算第一激發(fā)態(tài)類似。
Degenerate Stationary Perturbation Theory總結(jié)
第一步:在確定了問題的Hamiltonian與perturbation后,在能量表象
{∣0,0?,∣1,0?,∣0,1?,∣2,0?,∣1,1?,∣0,2?,?}={∣?0?,∣?11?,∣?12?,∣?21?,∣?22?,∣?23?,?}\{|0,0\rangle,|1,0 \rangle,|0,1\rangle,|2,0 \rangle,|1,1 \rangle,|0,2 \rangle,\cdots\} \\ = \{|\phi_0 \rangle,|\phi_1^1 \rangle,|\phi_1^2 \rangle,|\phi_2^1 \rangle,|\phi_2^2 \rangle,|\phi_2^3 \rangle,\cdots\}{∣0,0?,∣1,0?,∣0,1?,∣2,0?,∣1,1?,∣0,2?,?}={∣?0??,∣?11??,∣?12??,∣?21??,∣?22??,∣?23??,?}
下寫出Hamiltonian與perturbation的矩陣表示,并找出分塊的模式H0(n)H_0^{(n)}H0(n)?與W(n)W^{(n)}W(n);
第二步:用Stationary Perturbation Theory近似基態(tài)及其本征值,
E0=E00+λ?0,0∣W^∣0,0?+λ2∑px,py≠0∣?px,py∣W^∣0,0?∣2E00?Ep0∣ψ0?=∣0,0??λ∑px,py≠0?px,py∣W^∣0,0?E00?Ep0∣px,py?E_0 = E_0^0+\lambda \langle 0,0|\hat W |0,0 \rangle + \lambda^2 \sum_{p_x,p_y \ne 0} \frac{|\langle p_x,p_y |\hat W |0,0\rangle|^2}{E_0^0-E_p^0} \\ |\psi_0 \rangle = |0,0 \rangle-\lambda \sum_{p_x,p_y \ne 0}\frac{\langle p_x,p_y|\hat W|0,0 \rangle}{E_0^0-E_p^0}|p_x,p_y\rangleE0?=E00?+λ?0,0∣W^∣0,0?+λ2px?,py??=0∑?E00??Ep0?∣?px?,py?∣W^∣0,0?∣2?∣ψ0??=∣0,0??λpx?,py??=0∑?E00??Ep0??px?,py?∣W^∣0,0??∣px?,py??
第三步:計算W(n)W^{(n)}W(n)的本征值與本征態(tài),
W(n)∣vn,j?=?n,j∣vn,j?W^{(n)}|v_{n,j} \rangle = \epsilon_{n,j}|v_{n,j} \rangleW(n)∣vn,j??=?n,j?∣vn,j??
用下面的公式做近似En,j≈En0+?n,j∣ψn,j?=∣vn,j?E_{n,j} \approx E_n^0+\epsilon_{n,j} \\ |\psi_{n,j} \rangle = |v_{n,j} \rangleEn,j?≈En0?+?n,j?∣ψn,j??=∣vn,j??
總結(jié)
以上是生活随笔為你收集整理的UA OPTI570 量子力学30 Degenerate Stationary Perturbation Theory简介的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 2021-11-15UA OPTI512
- 下一篇: UA OPTI501 电磁波 Loren