2021-11-15UA OPTI512R 傅立叶光学导论20 夫琅禾费衍射
UA OPTI512R 傅立葉光學導論20 夫瑯禾費衍射
- Fraunhofer衍射的推導
Fraunhofer衍射的推導
從波的傳播公式開始
u2(x2,y2)=??∞+∞u1(x1,y1)zjλrejkrrdx1dy1u_2(x_2,y_2) = \iint_{-\infty}^{+\infty}u_1(x_1,y_1)\frac{z}{j \lambda r}\frac{e^{j k r}}{r} dx_1dy_1u2?(x2?,y2?)=??∞+∞?u1?(x1?,y1?)jλrz?rejkr?dx1?dy1?
我們上一講用small angle approximation計算了Fresnel衍射的公式:
u2(x2,y2)=ejkzjλz??∞+∞u1(x1,y1)ejπλz[(x2?x1)2+(y2?y1)2]?quadracticwavefrontdx1dy1u_2(x_2,y_2)=\frac{e^{jkz}}{j\lambda z} \iint_{-\infty}^{+\infty}u_1(x_1,y_1) \underbrace{e^{j \frac{\pi}{\lambda z}[(x_2-x_1)^2+(y_2-y_1)^2]}}_{quadractic\ wavefront}dx_1dy_1u2?(x2?,y2?)=jλzejkz???∞+∞?u1?(x1?,y1?)quadractic?wavefrontejλzπ?[(x2??x1?)2+(y2??y1?)2]??dx1?dy1?
它的含義是在Fresnel field中,我們可以用二次曲面波作為對波源的近似;在Frauhofer field中,這個近似依然成立,但此時x12+y12<<z2x_1^2+y_1^2 <<z^2x12?+y12?<<z2,由此可以對上式做進一步近似,
πλz[(x2?x1)2+(y2?y1)2]=πλz(x12+y12+x22+y22?2x1y1?2x2y2)≈πλz(x22+y22?2x1x2?2y1y2)\begin{aligned}\frac{\pi}{\lambda z}[(x_2-x_1)^2+(y_2-y_1)^2] & =\frac{\pi}{\lambda z}(x_1^2+y_1^2+x_2^2+y_2^2-2x_1y_1-2x_2y_2) \\ &\approx \frac{\pi}{\lambda z}(x_2^2+y_2^2-2x_1x_2-2y_1y_2) \end{aligned}λzπ?[(x2??x1?)2+(y2??y1?)2]?=λzπ?(x12?+y12?+x22?+y22??2x1?y1??2x2?y2?)≈λzπ?(x22?+y22??2x1?x2??2y1?y2?)?
代入到Fresnel衍射的公式中可得
u2(x2,y2)=ejkzjλzejπλz(x22+y22)??∞+∞u1(x1,y1)e?j2πλ(x1x2+y1y2)dx1dy1u_2(x_2,y_2)=\frac{e^{j k z}}{j \lambda z}e^{j \frac{\pi}{\lambda z}(x_2^2+y_2^2)}\iint_{-\infty}^{+\infty} u_1(x_1,y_1)e^{-j \frac{2 \pi}{\lambda}(x_1x_2+y_1y_2)}dx_1dy_1u2?(x2?,y2?)=jλzejkz?ejλzπ?(x22?+y22?)??∞+∞?u1?(x1?,y1?)e?jλ2π?(x1?x2?+y1?y2?)dx1?dy1?
綜上,用L1L_1L1?表示衍射的apperture size(比如小孔的孔徑、單縫的縫寬),當z>>πL12λz>>\frac{\pi L_1^2}{\lambda}z>>λπL12??時,觀察到的衍射為夫瑯禾費衍射,對應的波形為
u2(x2,y2)=ejkzjλzejπλz(x22+y22)??∞+∞u1(x1,y1)e?j2πλ(x1x2+y1y2)dx1dy1=ejkzjλzejπλz(x22+y22)F[u1(x1,y1)](ξ=x2λz,η=y2λz)\begin{aligned}u_2(x_2,y_2) & =\frac{e^{j k z}}{j \lambda z}e^{j \frac{\pi}{\lambda z}(x_2^2+y_2^2)}\iint_{-\infty}^{+\infty} u_1(x_1,y_1)e^{-j \frac{2 \pi}{\lambda}(x_1x_2+y_1y_2)}dx_1dy_1 \\ & =\frac{e^{j k z}}{j \lambda z}e^{j \frac{\pi}{\lambda z}(x_2^2+y_2^2)}\mathcal{F}[u_1(x_1,y_1)](\xi=\frac{x_2}{\lambda z},\eta=\frac{y_2}{\lambda z})\end{aligned}u2?(x2?,y2?)?=jλzejkz?ejλzπ?(x22?+y22?)??∞+∞?u1?(x1?,y1?)e?jλ2π?(x1?x2?+y1?y2?)dx1?dy1?=jλzejkz?ejλzπ?(x22?+y22?)F[u1?(x1?,y1?)](ξ=λzx2??,η=λzy2??)?
例 考慮單孔衍射,單孔半徑為L1=1cmL_1=1cmL1?=1cm,波長為1μm1\mu m1μm,觀測者與單孔距離為z>>314mz>>314mz>>314m,也就是此時觀測者觀察到的衍射現象為夫瑯禾費衍射。
zzz的大小與衍射類型總結
L1L_1L1?表示衍射的apperture size(比如小孔的孔徑、單縫的縫寬),L2L_2L2?表示觀測儀器的大小(比如方形白色屏幕的寬),zzz表示apperture到觀測者的距離,λ\lambdaλ表示光的波長
| 夫瑯禾費衍射 | z>>πL12λz>>\frac{\pi L_1^2}{\lambda}z>>λπL12?? | 平面波近似任意波源 |
| 菲涅爾衍射 | z3>>π4λ(L1+L2)4z^3>>\frac{\pi}{4 \lambda}(L_1+L_2)^4z3>>4λπ?(L1?+L2?)4 | 二次曲面波近似任意波源 |
| 瑞利-索墨菲衍射(近場衍射) | 不滿足上面兩個條件時 | 球面波近似任意波源 |
總結
以上是生活随笔為你收集整理的2021-11-15UA OPTI512R 傅立叶光学导论20 夫琅禾费衍射的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA OPTI501 电磁波 Loren
- 下一篇: UA OPTI570 量子力学30 De