电动力学每日一题 2021/10/23 载流板产生的电磁场
電動力學每日一題 2021/10/23 載流板產生的電磁場
- 載流板的輻射
載流板的輻射
先驗證電荷守恒:
?ρ?t=???J=???zJz=0\frac{\partial \rho}{\partial t} = -\nabla \cdot \textbf J = -\frac{\partial}{\partial z}J_z = 0?t?ρ?=???J=??z??Jz?=0
這說明雖然在這塊載流板上存在交流電,但總電荷量并沒有變化。
在10/19的題目中我們討論了對含cos?(w0t)\cos(w_0t)cos(w0?t)這一項的函數直接做Fourier變換在后續計算中會出現發散的積分,無法得到有物理意義的結果。所以我們假設w0=w′+iw′′w_0=w'+iw''w0?=w′+iw′′,在最后結果中取w′′→0w'' \to 0w′′→0,
J=Js0δ(y)eiw0?t+e?w0t2z^\textbf J = J_{s0}\delta(y) \frac{e^{iw_0^*t}+e^{-w_0 t}}{2} \hat zJ=Js0?δ(y)2eiw0??t+e?w0?t?z^
然后計算J\textbf JJ的Fourier變換,
J(k,w)=∫?∞+∞J(r,t)e?ik?rdr=Js02∫?∞+∞δ(y)eiw0?te?ik?rdrdt+Js02∫?∞+∞δ(y)e?w0te?ik?rdrdt=2π2Js0δ(kx)δ(kz)e?iw0tz^+2π2Js0δ(kx)δ(kz)eiw0?tz^\begin{aligned} \textbf J(\textbf k,w) & = \int_{-\infty}^{+\infty} \textbf J(\textbf r,t)e^{-i\textbf k\cdot \textbf r}d \textbf r \\ & = \frac{J_{s0}}{2}\int_{-\infty}^{+\infty} \delta(y)e^{iw_0^*t}e^{-i\textbf k\cdot \textbf r}d \textbf r dt+\frac{J_{s0}}{2}\int_{-\infty}^{+\infty} \delta(y)e^{-w_0t}e^{-i\textbf k\cdot \textbf r}d \textbf r dt \\ & = 2 \pi^2 J_{s0} \delta(k_x)\delta(k_z)e^{-iw_0 t}\hat z+2 \pi^2 J_{s0} \delta(k_x)\delta(k_z) e^{iw_0^*t} \hat z\end{aligned}J(k,w)?=∫?∞+∞?J(r,t)e?ik?rdr=2Js0??∫?∞+∞?δ(y)eiw0??te?ik?rdrdt+2Js0??∫?∞+∞?δ(y)e?w0?te?ik?rdrdt=2π2Js0?δ(kx?)δ(kz?)e?iw0?tz^+2π2Js0?δ(kx?)δ(kz?)eiw0??tz^?
下面分別計算這兩項產生的矢量勢,第一項產生的矢量勢為
(2π)?3∫?∞+∞2π2μ0Js0δ(kx)δ(kz)e?iw0tz^k2?(w0/c)2eik?rdk=μ0Js0e?iw0tz^4π∫?∞+∞eikyyky2?(w0/c)2dky=μ0Js0e?iw0tz^4ππeiw0∣y∣/c?iw0/c=iZ0Js04w0e?iw0(t?∣y∣/c)z^\begin{aligned} & (2\pi)^{-3} \int_{-\infty}^{+\infty} \frac{2 \pi^2 \mu_0 J_{s0} \delta(k_x)\delta(k_z)e^{-iw_0 t}\hat z}{k^2-(w_0/c)^2}e^{i \textbf k \cdot \textbf r}d \textbf k \\ = & \frac{\mu_0 J_{s0}e^{-iw_0 t}\hat z}{4 \pi} \int_{-\infty}^{+\infty} \frac{e^{i k_yy}}{k_y^2-(w_0/c)^2}dk_y \\ = & \frac{\mu_0 J_{s0}e^{-iw_0 t}\hat z}{4 \pi} \frac{\pi e^{iw_0|y|/c}}{-iw_0/c} = \frac{iZ_0J_{s0}}{4 w_0}e^{-iw_0(t-|y|/c)} \hat z\end{aligned}==?(2π)?3∫?∞+∞?k2?(w0?/c)22π2μ0?Js0?δ(kx?)δ(kz?)e?iw0?tz^?eik?rdk4πμ0?Js0?e?iw0?tz^?∫?∞+∞?ky2??(w0?/c)2eiky?y?dky?4πμ0?Js0?e?iw0?tz^??iw0?/cπeiw0?∣y∣/c?=4w0?iZ0?Js0??e?iw0?(t?∣y∣/c)z^?
其中
c=1μ0?0,Z0=μ0?0c = \sqrt{\frac{1}{\mu_0 \epsilon_0}},Z_0 = \sqrt{\frac{\mu_0}{\epsilon_0}}c=μ0??0?1??,Z0?=?0?μ0???
第二項產生的矢量勢為,
iZ0Js04w0eiw0?(t?∣y∣/c)z^\frac{iZ_0J_{s0}}{4 w_0}e^{iw_0^*(t-|y|/c)} \hat z4w0?iZ0?Js0??eiw0??(t?∣y∣/c)z^
當w′′→0w'' \to 0w′′→0時,w0=w0?w_0=w_0^*w0?=w0??,
A(r,t)=iZ0Js0z^4w0[eiw0?(t?∣y∣/c)+e?iw0(t?∣y∣/c)]=Z0Js02w0sin?(w0(t?∣y∣/c))z^\begin{aligned}\textbf A(\textbf r ,t) & = \frac{iZ_0J_{s0} \hat z}{4 w_0} [e^{iw_0^*(t-|y|/c)}+e^{-iw_0(t-|y|/c)}] \\ & = \frac{Z_0J_{s0}}{2w_0}\sin(w_0(t-|y|/c))\hat z\end{aligned}A(r,t)?=4w0?iZ0?Js0?z^?[eiw0??(t?∣y∣/c)+e?iw0?(t?∣y∣/c)]=2w0?Z0?Js0??sin(w0?(t?∣y∣/c))z^?
接下來要計算Electric field與Magnetic field,就懶得寫了
總結
以上是生活随笔為你收集整理的电动力学每日一题 2021/10/23 载流板产生的电磁场的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA OPTI501 电磁波 求解麦克斯
- 下一篇: UA OPTI501 电磁波 经典电动力