UA OPTI501 电磁波 求解麦克斯韦方程组的Fourier方法3 Coulomb Gauge下讨论Maxwell方程
UA OPTI501 電磁波 求解麥克斯韋方程組的Fourier方法3 Coulomb Gauge下討論Maxwell方程
Use the macroscopic equation with D-field, H-field eliminated by bound charge and bound current:
??E=ρtotal(e)?0?×B=μ0Jtotal(e)+μ0?0??tE?×E=???tB??B=0\nabla \cdot \textbf E =\frac{\rho_{total}^{(e)}}{\epsilon_0} \\ \nabla \times \textbf B=\mu_0 \textbf J^{(e)}_{total}+\mu_0 \epsilon_0\frac{\partial}{\partial t}\textbf E \\ \nabla \times \textbf E=-\frac{\partial}{\partial t}\textbf B \\ \nabla \cdot \textbf B=0??E=?0?ρtotal(e)???×B=μ0?Jtotal(e)?+μ0??0??t??E?×E=??t??B??B=0
Also define scalar potential ψ\psiψ and A\textbf AA satisfying
B=?×AE=??ψ??A?t\textbf B = \nabla \times \textbf A \\ \textbf E = -\nabla \psi - \frac{\partial \textbf A}{\partial t}B=?×AE=??ψ??t?A?
so that Maxwell 3 and 4 are naturally satisfied. Now assume
ρtotal(e)=ρ0ei(k?r?wt),Jtotal(e)=J0ei(k?r?wt)A=(A∣∣+A⊥)ei(k?r?wt),ψ=ψ0ei(k?r?wt)\rho^{(e)}_{total}=\rho_0e^{i(\textbf k\cdot \textbf r - wt)}, \textbf J_{total}^{(e)}=\textbf J_0 e^{i(\textbf k \cdot \textbf r -wt)} \\ \textbf A = (\textbf A_{||}+\textbf A_{\perp})e^{i(\textbf k \cdot \textbf r - wt)},\psi = \psi_0 e^{i(\textbf k \cdot \textbf r - wt)}ρtotal(e)?=ρ0?ei(k?r?wt),Jtotal(e)?=J0?ei(k?r?wt)A=(A∣∣?+A⊥?)ei(k?r?wt),ψ=ψ0?ei(k?r?wt)
Under Coulomb gauge, ??A=0\nabla \cdot \textbf A=0??A=0. Replace ?\nabla? by iki \textbf kik and ??t\frac{\partial}{\partial t}?t?? by ?iw-iw?iw, ik?(A∣∣+A⊥)ei(k?r?wt)=0i\textbf k \cdot (\textbf A_{||}+\textbf A_{\perp})e^{i(\textbf k \cdot \textbf r - wt)}=0ik?(A∣∣?+A⊥?)ei(k?r?wt)=0, A∣∣=0\textbf A_{||}=0A∣∣?=0. So A=A⊥ei(k?r?wt)\textbf A = \textbf A_{\perp}e^{i(\textbf k \cdot \textbf r - wt)}A=A⊥?ei(k?r?wt). As a result,
B=(B∣∣+B⊥)ei(k?r?wt)=ik×A⊥ei(k?r?wt)B∣∣=0,B⊥=ik×A⊥E=(E∣∣+E⊥)ei(k?r?wt)=?ikψ0ei(k?r?wt)+iwA⊥ei(k?r?wt)E∣∣=?ikψ0,E⊥=iwA⊥\textbf B =( \textbf B_{||}+\textbf B_{\perp}) e^{i(\textbf k \cdot \textbf r - wt)}= i \textbf k \times \textbf A_{\perp}e^{i(\textbf k \cdot \textbf r - wt)} \\ \textbf B_{||}=0,\textbf B_{\perp} = i \textbf k \times \textbf A_{\perp} \\ \textbf E =( \textbf E_{||}+\textbf E_{\perp}) e^{i(\textbf k \cdot \textbf r - wt)}=-i \textbf k \psi_0 e^{i(\textbf k \cdot \textbf r - wt)} +iw\textbf A_{\perp}e^{i(\textbf k \cdot \textbf r - wt)} \\ \textbf E_{||} = -i \textbf k \psi_0, \textbf E_{\perp} =iw\textbf A_{\perp} B=(B∣∣?+B⊥?)ei(k?r?wt)=ik×A⊥?ei(k?r?wt)B∣∣?=0,B⊥?=ik×A⊥?E=(E∣∣?+E⊥?)ei(k?r?wt)=?ikψ0?ei(k?r?wt)+iwA⊥?ei(k?r?wt)E∣∣?=?ikψ0?,E⊥?=iwA⊥?
Now replace ?\nabla? by iki \textbf kik and ??t\frac{\partial}{\partial t}?t?? by ?iw-iw?iw in Maxwell 1 and 2.
ik?(E∣∣+E⊥)=k2ψ0=ρ0?0,ψ0=ρ0?0k2ik×B⊥=μ0J0?iwμ0?0(E∣∣+E⊥)i \textbf k \cdot( \textbf E_{||}+\textbf E_{\perp}) =k^2 \psi_0=\frac{\rho_0}{\epsilon_0},\psi_0 = \frac{\rho_0}{\epsilon_0 k^2} \\ i \textbf k \times \textbf B_{\perp} = \mu_0\textbf J_0 -iw\mu_0 \epsilon_0 ( \textbf E_{||}+\textbf E_{\perp}) ik?(E∣∣?+E⊥?)=k2ψ0?=?0?ρ0??,ψ0?=?0?k2ρ0??ik×B⊥?=μ0?J0??iwμ0??0?(E∣∣?+E⊥?)
LHS is ik×(ik×A⊥)=?k×(k×A⊥)=k2A⊥\begin{aligned} i \textbf k \times(i \textbf k \times \textbf A_{\perp}) & = - \textbf k \times(\textbf k \times \textbf A_{\perp}) = k^2 \textbf A_{\perp}\end{aligned}ik×(ik×A⊥?)?=?k×(k×A⊥?)=k2A⊥?? and the second term of RHS is iwμ0?0(E∣∣+E⊥)=iwμ0?0(?ikψ0+iwA⊥)=μ0wρ0k/k2?(w/c)2A⊥iw\mu_0 \epsilon_0 ( \textbf E_{||}+\textbf E_{\perp}) =iw\mu_0 \epsilon_0 ( -i \textbf k \psi_0+iw\textbf A_{\perp} )=\mu_0w\rho_0 \textbf k/k^2 -(w/c)^2\textbf A_{\perp}iwμ0??0?(E∣∣?+E⊥?)=iwμ0??0?(?ikψ0?+iwA⊥?)=μ0?wρ0?k/k2?(w/c)2A⊥?. Thus,
k2A⊥=μ0(J0∣∣+J0⊥)?μ0wρ0k/k2+(w/c)2A⊥k^2 \textbf A_{\perp} = \mu_0(\textbf J_{0 ||}+\textbf J_{0 \perp})-\mu_0w\rho_0 \textbf k/k^2+(w/c)^2\textbf A_{\perp}k2A⊥?=μ0?(J0∣∣?+J0⊥?)?μ0?wρ0?k/k2+(w/c)2A⊥?
Consider the continuity equation of charge,
ik?J0?iwρ0=0J0∣∣?wρk^/k=0i \textbf k \cdot \textbf J_0 -i w \rho_0 = 0 \\ \textbf J_{0||}-w\rho \hat k/k=0ik?J0??iwρ0?=0J0∣∣??wρk^/k=0
Thus,
k2A⊥=μ0J0⊥+(w/c)2A⊥A⊥=μ0J⊥k2?(w/c)2k^2 \textbf A_{\perp} = \mu_0\textbf J_{0 \perp}+(w/c)^2\textbf A_{\perp} \\ \textbf A_{\perp} = \frac{\mu_0 \textbf J_{\perp}}{k^2-(w/c)^2}k2A⊥?=μ0?J0⊥?+(w/c)2A⊥?A⊥?=k2?(w/c)2μ0?J⊥??
So the E-field and B-field are
E=?ikψ0+iwA⊥=?iρ0k?0k2+iμ0wJ0⊥k2?(w/c)2B=ik×A⊥=iμ0k×J0k2?(w/c)2\textbf E = -i \textbf k \psi_0+iw\textbf A_{\perp}=-i \frac{\rho_0 \textbf k}{\epsilon_0 k^2}+i\frac{\mu_0 w \textbf J_{0 \perp}}{k^2-(w/c)^2} \\ \textbf B = i \textbf k \times \textbf A_{\perp}=i\frac{\mu_0 \textbf k \times \textbf J_0}{k^2-(w/c)^2}E=?ikψ0?+iwA⊥?=?i?0?k2ρ0?k?+ik2?(w/c)2μ0?wJ0⊥??B=ik×A⊥?=ik2?(w/c)2μ0?k×J0??
B-field is the same as the result under Lorenz gauge. However, the E-field looks a little different. The E-field under Lorenz gauge is
E=?i(ρ0/?0)k+iμ0wJ0k2?(w/c)2\textbf E=\frac{-i(\rho_0/\epsilon_0)\textbf k+i\mu_0 w \textbf J_0}{k^2-(w/c)^2}E=k2?(w/c)2?i(ρ0?/?0?)k+iμ0?wJ0??
Since
J0=J0∣∣+J0⊥=wρk/k2+J0⊥\textbf J_0=\textbf J_{0 ||}+\textbf J_{0 \perp}=w\rho \textbf k/k^2+\textbf J_{0 \perp}J0?=J0∣∣?+J0⊥?=wρk/k2+J0⊥?
The E-field under Lorenz field can be reformulated as
E=?i(ρ0/?0)k+iμ0w2ρk/k2+iμ0wJ0⊥k2?(w/c)2=?iρ0k?0k2+iμ0wJ0⊥k2?(w/c)2\textbf E=\frac{-i(\rho_0/\epsilon_0)\textbf k+i\mu_0w^2\rho \textbf k/k^2+i\mu_0 w \textbf J_{0 \perp}}{k^2-(w/c)^2}=-i \frac{\rho_0 \textbf k}{\epsilon_0 k^2}+i\frac{\mu_0 w \textbf J_{0 \perp}}{k^2-(w/c)^2}E=k2?(w/c)2?i(ρ0?/?0?)k+iμ0?w2ρk/k2+iμ0?wJ0⊥??=?i?0?k2ρ0?k?+ik2?(w/c)2μ0?wJ0⊥??
which is the same as the E-field under Couloub gauge.
總結
以上是生活随笔為你收集整理的UA OPTI501 电磁波 求解麦克斯韦方程组的Fourier方法3 Coulomb Gauge下讨论Maxwell方程的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA OPTI512R 傅立叶光学导论1
- 下一篇: 电动力学每日一题 2021/10/23