电动力学每日一题 2021/10/15 Fourier变换法计算均匀电流密度产生的磁场
電動力學每日一題 2021/10/15 Fourier變換法計算均勻電流密度產生的磁場
- 無限長均勻電流
- 無限長圓柱面均勻電流密度
無限長均勻電流
假設z軸上有一根非常細的電線,攜帶均勻電流I0I_0I0?,則空間中的電流密度可以表示為
J(r,t)=I0δ(x)δ(y)z^\textbf J(\textbf r,t)=I_0 \delta(x)\delta(y)\hat zJ(r,t)=I0?δ(x)δ(y)z^
它的Fourier變換為
J(k,w)=(2π)2I0δ(kz)δ(w)z^\textbf J(\textbf k,w)=(2 \pi)^{2}I_0 \delta(k_z)\delta(w)\hat zJ(k,w)=(2π)2I0?δ(kz?)δ(w)z^
則磁場的Fourier變換為
H(k,w)=ik×J(k,w)k2?(w/c)2=i(2π)2I0δ(kz)δ(w)k2?(w/c)2k×z^\textbf H(\textbf k,w)=\frac{i \textbf k \times \textbf J(\textbf k ,w)}{k^2 - (w/c)^2}=\frac{i(2 \pi)^{2}I_0 \delta(k_z)\delta(w)}{k^2-(w/c)^2} \textbf k \times \hat zH(k,w)=k2?(w/c)2ik×J(k,w)?=k2?(w/c)2i(2π)2I0?δ(kz?)δ(w)?k×z^
因為k=k∣∣k^∣∣+kzz^\textbf k=k_{||} \hat k_{||}+k_z \hat zk=k∣∣?k^∣∣?+kz?z^,其中k∣∣=k∣∣k^∣∣=kxx^+kyy^=k∣∣cos??r^∣∣\textbf k_{||}=k_{||} \hat k_{||}=k_x \hat x+ k_y \hat y=k_{||}\cos \phi \hat r_{||}k∣∣?=k∣∣?k^∣∣?=kx?x^+ky?y^?=k∣∣?cos?r^∣∣?
所以
k×z^=(k∣∣k^∣∣+kzz^)×z^=k∣∣cos??r^∣∣×z^=k∣∣cos???^H(k,w)=i(2π)2I0δ(kz)δ(w)k∣∣2+kz2?(w/c)2k∣∣cos???^\textbf k \times \hat z=(k_{||} \hat k_{||}+k_z \hat z) \times \hat z = k_{||} \cos \phi \hat r_{||} \times \hat z = k_{||}\cos \phi \hat \phi \\ \textbf H(\textbf k,w)=\frac{i(2 \pi)^{2}I_0 \delta(k_z)\delta(w)}{k_{||}^2+k_z^2-(w/c)^2} k_{||} \cos \phi \hat \phi k×z^=(k∣∣?k^∣∣?+kz?z^)×z^=k∣∣?cos?r^∣∣?×z^=k∣∣?cos??^?H(k,w)=k∣∣2?+kz2??(w/c)2i(2π)2I0?δ(kz?)δ(w)?k∣∣?cos??^?
并且
∫?∞+∞dkxdky=∫02π∫0+∞k∣∣dk∣∣d?\int_{-\infty}^{+\infty}dk_xdk_y=\int_{0}^{2 \pi} \int_0^{+\infty} k_{||}d k_{||}d \phi∫?∞+∞?dkx?dky?=∫02π?∫0+∞?k∣∣?dk∣∣?d?
計算H\textbf HH的Fourier逆變換,
H(r,t)=(2π)?4∫?∞+∞H(k,w)ei(k?r?wt)dkdw=(2π)?4∫?∞+∞i(2π)2I0δ(kz)δ(w)k∣∣2+kz2?(w/c)2k∣∣cos???^ei(k?r?wt)dkdw=iI0?^4π2∫?∞+∞1k∣∣2k∣∣cos??ei(k∣∣?r)dkxdky=iI0?^4π2∫?∞+∞cos??ei(k∣∣?r)dk∣∣d?=I0?^2π∫0+∞J1(k∣∣r∣∣)dk∣∣=I0?^2πr∣∣\begin{aligned} \textbf H(\textbf r,t) & = (2 \pi)^{-4}\int_{-\infty}^{+\infty} \textbf H(\textbf k,w)e^{i(\textbf k \cdot \textbf r - wt)}d\textbf k d w \\ & = (2 \pi)^{-4}\int_{-\infty}^{+\infty} \frac{i(2 \pi)^{2}I_0 \delta(k_z)\delta(w)}{k_{||}^2+k_z^2-(w/c)^2} k_{||} \cos \phi \hat \phi e^{i(\textbf k \cdot \textbf r - wt)}d\textbf k d w \\ & = \frac{i I_0 \hat \phi}{4 \pi^2}\int_{-\infty}^{+\infty} \frac{1}{k_{||}^2} k_{||} \cos \phi e^{i(\textbf k_{||} \cdot \textbf r)}dk_xdk_y \\ & = \frac{i I_0 \hat \phi}{4 \pi^2}\int_{-\infty}^{+\infty} \cos \phi e^{i(\textbf k_{||} \cdot \textbf r)}dk_{||}d \phi \\ &= \frac{I_0 \hat \phi}{2\pi}\int_0^{+\infty}J_1(k_{||}r_{||})d k_{||} = \frac{I_0 \hat \phi}{2 \pi r_{||}} \end{aligned}H(r,t)?=(2π)?4∫?∞+∞?H(k,w)ei(k?r?wt)dkdw=(2π)?4∫?∞+∞?k∣∣2?+kz2??(w/c)2i(2π)2I0?δ(kz?)δ(w)?k∣∣?cos??^?ei(k?r?wt)dkdw=4π2iI0??^??∫?∞+∞?k∣∣2?1?k∣∣?cos?ei(k∣∣??r)dkx?dky?=4π2iI0??^??∫?∞+∞?cos?ei(k∣∣??r)dk∣∣?d?=2πI0??^??∫0+∞?J1?(k∣∣?r∣∣?)dk∣∣?=2πr∣∣?I0??^???
無限長圓柱面均勻電流密度
考慮一個軸在z軸上的無限高薄殼圓柱體,電流密度為
J(r,t)=J0δ(ρ?R)z^\textbf J(\textbf r,t)=J_0 \delta(\rho-R)\hat zJ(r,t)=J0?δ(ρ?R)z^
它的Fourier變換為
J(k,w)=∫?∞+∞J(r,t)e?i(k?r?wt)drdt=∫?∞+∞J0δ(ρ?R)z^e?i(k?r?wt)drdt=4π2δ(kz)δ(w)J0z^∫?∞+∞δ(ρ?R)e?i(kxx+kyy)dxdy=4π2δ(kz)δ(w)J0z^∫02π∫0+∞δ(ρ?R)e?ik∣∣ρcos??ρdρd?=4π2Rδ(kz)δ(w)J0z^∫02πe?ik∣∣Rcos??d?=8π3RJ0δ(kz)δ(w)J0(k∣∣R)z^\begin{aligned} \textbf J(\textbf k,w) & = \int_{-\infty}^{+\infty} \textbf J(\textbf r,t) e^{-i(\textbf k\cdot \textbf r - wt)}d \textbf r dt \\ & = \int_{-\infty}^{+\infty} J_0 \delta(\rho-R)\hat z e^{-i(\textbf k\cdot \textbf r - wt)}d \textbf r dt \\ & = 4 \pi^2 \delta(k_z)\delta(w)J_0 \hat z \int_{-\infty}^{+\infty}\delta(\rho-R) e^{-i(k_xx+k_yy)} dxdy \\ & = 4 \pi^2 \delta(k_z)\delta(w)J_0 \hat z \int_0^{2 \pi} \int_0^{+\infty} \delta(\rho-R)e^{-ik_{||} \rho \cos \phi} \rho d \rho d \phi \\ & = 4 \pi^2R \delta(k_z)\delta(w)J_0 \hat z \int_0^{2 \pi}e^{-ik_{||} R \cos \phi} d \phi \\ & = 8 \pi^3 RJ_0\delta(k_z)\delta(w) J_0(k_{||}R)\hat z\end{aligned}J(k,w)?=∫?∞+∞?J(r,t)e?i(k?r?wt)drdt=∫?∞+∞?J0?δ(ρ?R)z^e?i(k?r?wt)drdt=4π2δ(kz?)δ(w)J0?z^∫?∞+∞?δ(ρ?R)e?i(kx?x+ky?y)dxdy=4π2δ(kz?)δ(w)J0?z^∫02π?∫0+∞?δ(ρ?R)e?ik∣∣?ρcos?ρdρd?=4π2Rδ(kz?)δ(w)J0?z^∫02π?e?ik∣∣?Rcos?d?=8π3RJ0?δ(kz?)δ(w)J0?(k∣∣?R)z^?
所以磁場為
H(r,t)=(2π)?4∫?∞+∞ik×J(k,w)k2?(w/c)2ei(k?r?wt)dkdw=iJ0R?^2π∫?∞+∞k∣∣cos??k∣∣2J0(k∣∣R)eik∣∣?r∣∣dk∣∣=iJ0R(??^)2π∫02π∫0+∞cos??J0(k∣∣R)eik∣∣r∣∣cos??dk∣∣d?=J0R?^∫0+∞J0(k∣∣R)J1(k∣∣r∣∣)dk∣∣={0,ρ<RJ0Rρ,ρ>R\begin{aligned} \textbf H(\textbf r,t) & = (2 \pi)^{-4} \int_{-\infty}^{+\infty} \frac{i \textbf k \times \textbf J(\textbf k,w)}{k^2-(w/c)^2}e^{i(\textbf k\cdot \textbf r-wt)} d\textbf kdw \\ & = \frac{iJ_0R \hat \phi}{2 \pi} \int_{-\infty}^{+\infty}\frac{k_{||}\cos \phi}{k_{||}^2}J_0(k_{||}R)e^{i \textbf k_{||}\cdot \textbf r_{||}}d \textbf k_{||} \\ & =\frac{iJ_0R (-\hat \phi)}{2 \pi} \int_{0}^{2 \pi} \int_0^{+\infty}\cos \phi J_0(k_{||}R)e^{i k_{||} r_{||} \cos \phi}d k_{||} d \phi \\ & = J_0 R \hat \phi \int_0^{+\infty}J_0(k_{||}R)J_1(k_{||}r_{||})dk_{||} \\ & = \begin{cases} 0, \rho < R \\ \frac{J_0R}{\rho}, \rho>R\end{cases}\end{aligned}H(r,t)?=(2π)?4∫?∞+∞?k2?(w/c)2ik×J(k,w)?ei(k?r?wt)dkdw=2πiJ0?R?^??∫?∞+∞?k∣∣2?k∣∣?cos??J0?(k∣∣?R)eik∣∣??r∣∣?dk∣∣?=2πiJ0?R(??^?)?∫02π?∫0+∞?cos?J0?(k∣∣?R)eik∣∣?r∣∣?cos?dk∣∣?d?=J0?R?^?∫0+∞?J0?(k∣∣?R)J1?(k∣∣?r∣∣?)dk∣∣?={0,ρ<RρJ0?R?,ρ>R??
總結
以上是生活随笔為你收集整理的电动力学每日一题 2021/10/15 Fourier变换法计算均匀电流密度产生的磁场的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 电动力学每日一题 2021/10/14
- 下一篇: UA OPTI570 量子力学22 2-