Hierarchy of Log-Cauchy
Hierarchy of Log-Cauchy LC(0,π)LC(0,\pi)LC(0,π)
γi∣wi~Gamma(pi,wi)wi∣pi~Gamma(1?pi,1)pi~U(0,1)\gamma_i|w_i \sim Gamma(p_i,w_i) \\ w_i|p_i \sim Gamma(1-p_i,1) \\ p_i \sim U(0,1)γi?∣wi?~Gamma(pi?,wi?)wi?∣pi?~Gamma(1?pi?,1)pi?~U(0,1)
π(γi,wi,pi)=wipiγipi?1e?wiγiΓ(pi)wi?pie?wiΓ(1?pi)\pi(\gamma_i,w_i,p_i)=\frac{w_i^{p_i}\gamma_i^{p_i-1}e^{-w_i\gamma_i}}{\Gamma(p_i)}\frac{w_i^{-p_i}e^{-w_i}}{\Gamma(1-p_i)}π(γi?,wi?,pi?)=Γ(pi?)wipi??γipi??1?e?wi?γi??Γ(1?pi?)wi?pi??e?wi??
Recall Euler reflection formula:
Γ(pi)Γ(1?pi)=πsin?(πpi)\Gamma(p_i)\Gamma(1-p_i)=\frac{\pi}{\sin(\pi p_i)}Γ(pi?)Γ(1?pi?)=sin(πpi?)π?
And the joint density becomes
π(γi,wi,pi)=γipi?1e?(γi+1)wisin?(πpi)ππ(γi,pi)=γipi?1sin?(πpi)π(γi+1)\pi(\gamma_i,w_i,p_i)=\frac{\gamma_i^{p_i-1}e^{-(\gamma_i+1)w_i}\sin(\pi p_i)}{\pi}\\ \pi(\gamma_i,p_i)=\frac{\gamma_i^{p_i-1}\sin(\pi p_i)}{\pi(\gamma_i+1)}π(γi?,wi?,pi?)=πγipi??1?e?(γi?+1)wi?sin(πpi?)?π(γi?,pi?)=π(γi?+1)γipi??1?sin(πpi?)?
Evaluate the integral
I=∫01γipisin?(πpi)dpi=π(γi+1)π2+ln?2(γi)I=\int_{0}^1 \gamma_i^{p_i}\sin(\pi p_i)dp_i=\frac{\pi(\gamma_i+1)}{\pi^2+\ln^2(\gamma_i)}I=∫01?γipi??sin(πpi?)dpi?=π2+ln2(γi?)π(γi?+1)?
Above
π(γi)=1γi[ln?2(γi)+π2]\pi(\gamma_i)=\frac{1}{\gamma_i[\ln^2(\gamma_i)+\pi^2]}π(γi?)=γi?[ln2(γi?)+π2]1?
總結
以上是生活随笔為你收集整理的Hierarchy of Log-Cauchy的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA OPTI570 量子力学4 带不含
- 下一篇: UA OPTI512R 傅立叶光学导论5