UA PHYS515A 电磁理论V 电磁波与辐射6 波导
UA PHYS515A 電磁理論V 電磁波與輻射6 波導
波導(wave guide)是用來定向引導電磁波的結構,它為我們研究邊界條件對電磁波傳播的影響提供了一個簡單的模型。假設電磁波的形式為
E=Ewe?iwt,B=Bwe?iwt\textbf E = \textbf E_w e^{-iwt},\textbf B = \textbf B_w e^{-iwt}E=Ew?e?iwt,B=Bw?e?iwt
真空中的它適用的Maxwell方程為
?×Ew=iwcBw??Ew=0?×Bw=iμ?wcEw??Bw=0\nabla \times \textbf E_w = \frac{iw}{c} \textbf B_w \\ \nabla \cdot \textbf E_w = 0 \\ \nabla \times \textbf B_w = i \mu \epsilon \frac{w}{c}\textbf E_w \\ \nabla \cdot \textbf B_w = 0?×Ew?=ciw?Bw???Ew?=0?×Bw?=iμ?cw?Ew???Bw?=0
上面的方程可以改寫為Helmholtz方程:
(?2+w2c2)E=0(?2+w2c2)B=0(\nabla^2+\frac{w^2}{c^2}) \textbf E = 0 \\ (\nabla^2 + \frac{w^2}{c^2}) \textbf B = 0(?2+c2w2?)E=0(?2+c2w2?)B=0
假設介質是一個截面形狀任意的柱狀體,則電場可以表示為
Ew=Ewt(x,y)eikgz\textbf E_w = \textbf E_{wt}(x,y)e^{ik_gz}Ew?=Ewt?(x,y)eikg?z
第一項限制電磁波在截面內的形狀;第二項表示電磁波在zzz軸方向的傳播;假設磁場也可以類似表示;則Helmholtz方程可以寫成:
(?2?x2+?2?y2+w2c2?kg2)Ewt(x,y)=0(?2?x2+?2?y2+w2c2?kg2)Ewt(x,y)=0(\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) \textbf E_{wt}(x,y)=0 \\ (\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) \textbf E_{wt}(x,y)=0(?x2?2?+?y2?2?+c2w2??kg2?)Ewt?(x,y)=0(?x2?2?+?y2?2?+c2w2??kg2?)Ewt?(x,y)=0
我們可以先不急著解這個二階的PDE,先回顧一下一階的方程:
?×Ew=iwcBw\nabla \times \textbf E_w = \frac{iw}{c} \textbf B_w ?×Ew?=ciw?Bw?
xxx方向的分量為
??yEwtz?ikgEwty=iwcBwtx\frac{\partial}{\partial y}E_{wtz}-ik_gE_{wty} = i\frac{w}{c}B_{wtx}?y??Ewtz??ikg?Ewty?=icw?Bwtx?
再考慮Ampere定律?×Bw=?iwcEw\nabla \times \textbf B_w = -\frac{iw}{c}\textbf E_w?×Bw?=?ciw?Ew?
yyy方向的分量為
???xBwtz+ikgBwtx=?iwcEwty-\frac{\partial}{\partial x}B_{wtz}+ik_gB_{wtx} =- i\frac{w}{c}E_{wty}??x??Bwtz?+ikg?Bwtx?=?icw?Ewty?
聯合上面兩個分量形式的方程,消去EwtyE_{wty}Ewty?,
Bwtx=?i(wc)2?kg2(wc?Ewtz?y?kg?Bwtz?x)B_{wtx} = -\frac{i}{(\frac{w}{c})^2-k_g^2}\left( \frac{w}{c} \frac{\partial E_{wtz}}{\partial y}-k_g \frac{\partial B_{wtz}}{\partial x} \right)Bwtx?=?(cw?)2?kg2?i?(cw??y?Ewtz???kg??x?Bwtz??)
同理可以得到另外的分量:
Bwty=i(wc)2?kg2(wc?Ewtz?x+kg?Bwtz?y)Ewtx=i(wc)2?kg2(wc?Bwtz?y+kg?Ewtz?x)Ewty=?i(wc)2?kg2(wc?Bwtz?x?kg?Ewtz?y)B_{wty} = \frac{i}{(\frac{w}{c})^2-k_g^2}\left( \frac{w}{c} \frac{\partial E_{wtz}}{\partial x}+k_g \frac{\partial B_{wtz}}{\partial y} \right) \\ E_{wtx} = \frac{i}{(\frac{w}{c})^2-k_g^2}\left( \frac{w}{c} \frac{\partial B_{wtz}}{\partial y}+k_g \frac{\partial E_{wtz}}{\partial x} \right) \\ E_{wty} = -\frac{i}{(\frac{w}{c})^2-k_g^2}\left( \frac{w}{c} \frac{\partial B_{wtz}}{\partial x}-k_g \frac{\partial E_{wtz}}{\partial y} \right)Bwty?=(cw?)2?kg2?i?(cw??x?Ewtz??+kg??y?Bwtz??)Ewtx?=(cw?)2?kg2?i?(cw??y?Bwtz??+kg??x?Ewtz??)Ewty?=?(cw?)2?kg2?i?(cw??x?Bwtz???kg??y?Ewtz??)
由此可見,只要我們能解出zzz方向的分量,我們就可以得到電磁波的方程了。在實踐中有三種特殊情況:
這三種是電磁波在傳輸線中常見的三種模式。但即使在一般情況中,我們也只需要求解
(?2?x2+?2?y2+w2c2?kg2)Ewtz(x,y)=0(?2?x2+?2?y2+w2c2?kg2)Bwtz(x,y)=0(\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) E_{wtz}(x,y)=0 \\ (\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) B_{wtz}(x,y)=0(?x2?2?+?y2?2?+c2w2??kg2?)Ewtz?(x,y)=0(?x2?2?+?y2?2?+c2w2??kg2?)Bwtz?(x,y)=0
例 矩形傳輸線
假設導線截面為{(x,y,z):0≤x≤a,0≤y≤b}\{(x,y,z):0 \le x \le a,0 \le y \le b\}{(x,y,z):0≤x≤a,0≤y≤b},則導線邊界上的電場為0,電場與磁場的一般形式為
Ew=Ewt(x,y)eikgz,Bw=Bwt(x,y)eikgz\textbf E_{w} = \textbf E_{wt}(x,y)e^{ik_gz},\textbf B_{w} = \textbf B_{wt}(x,y)e^{ik_gz}Ew?=Ewt?(x,y)eikg?z,Bw?=Bwt?(x,y)eikg?z
且只需求解
(?2?x2+?2?y2+w2c2?kg2)Ewtz(x,y)=0(?2?x2+?2?y2+w2c2?kg2)Bwtz(x,y)=0(\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) E_{wtz}(x,y)=0 \\ (\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) B_{wtz}(x,y)=0(?x2?2?+?y2?2?+c2w2??kg2?)Ewtz?(x,y)=0(?x2?2?+?y2?2?+c2w2??kg2?)Bwtz?(x,y)=0
如果是TM模,則第二個方程中Bwtz=0B_{wtz}=0Bwtz?=0,第一個方程的一般解為
Ewtz=E0sin?(kxx)sin?(kyy),kx=mπa,ky=nπb,m,n∈Nkg2+kx2+ky2=w2c2?kg2=w2c2?π2(m2a2+n2b2)E_{wtz} = E_0 \sin(k_x x)\sin(k_yy),k_x= \frac{m \pi}{a},k_y = \frac{n \pi }{b},m,n \in \mathbb{N} \\ k_g^2+k_x^2+k_y^2 = \frac{w^2}{c^2}\Rightarrow k_g^2 = \frac{w^2}{c^2}-\pi^2(\frac{m^2}{a^2}+\frac{n^2}{b^2})Ewtz?=E0?sin(kx?x)sin(ky?y),kx?=amπ?,ky?=bnπ?,m,n∈Nkg2?+kx2?+ky2?=c2w2??kg2?=c2w2??π2(a2m2?+b2n2?)
通過調整導線的尺寸a,ba,ba,b,我們可以通過控制kgk_gkg?來改變電磁波沿zzz方向傳播的形式(with attenuation or without attenuation etc.)。
總結
以上是生活随笔為你收集整理的UA PHYS515A 电磁理论V 电磁波与辐射6 波导的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA PHYS515A 电磁理论V 电磁
- 下一篇: UA PHYS515A 电磁理论V 电磁