UA MATH566 统计理论 一个例题 Hierarchical Model的统计性质
UA MATH566 統計理論 一個例題 Hierarchical Model的統計性質
Y∣X~Pois(X)Y|X \sim Pois(X)Y∣X~Pois(X) and X~Γ(α,β)X \sim \Gamma(\alpha,\beta)X~Γ(α,β). Y1,?,YnY_1,\cdots,Y_nY1?,?,Yn? are random sample from population YYY.
Part (a) Find EYEYEY
Part (b) Find Var(Y)Var(Y)Var(Y)
Part (c) If α=1\alpha = 1α=1, find MLE of β\betaβ.
Part (d) If α=1\alpha = 1α=1, find a minimal sufficient statistics for β\betaβ.
Part (e) Is MLE consistent?
Answer.
Part (a)
Note that E[Y∣X]=XE[Y|X] = XE[Y∣X]=X, by law of total expectation,
E[E[Y∣X]]=EX=αβE[E[Y|X]] = EX = \frac{\alpha}{ \beta}E[E[Y∣X]]=EX=βα?
Part (b)
Note that Var[Y∣X]=XVar[Y|X] = XVar[Y∣X]=X, by law of total variance,
Var(Y)=Var(E[Y∣X])+E(Var[Y∣X])=Var(X)+EX=α(1+β)β2Var(Y) = Var(E[Y|X]) + E(Var[Y|X] ) = Var(X) + EX = \frac{\alpha (1+\beta)}{\beta^2}Var(Y)=Var(E[Y∣X])+E(Var[Y∣X])=Var(X)+EX=β2α(1+β)?
Part (c)
If α=1\alpha = 1α=1, density of XXX is
fX(x)=βe?βx,x≥0f_X(x) = \beta e^{-\beta x},x \ge 0fX?(x)=βe?βx,x≥0
density of YYY is
fY(y)=∫0∞fY∣X(y∣x)fX(x)dx=∫0∞xye?xy!βe?βxdx=βy!∫0∞xye?(1+β)xdxf_Y(y) =\int_{ 0}^{\infty} f_{Y|X}(y|x)f_X(x) dx= \int_{ 0}^{\infty} \frac{x^y e^{-x}}{y!} \beta e^{-\beta x} dx \\ = \frac{\beta}{y!}\int_{ 0}^{\infty} x^y e^{-(1+\beta )x} dxfY?(y)=∫0∞?fY∣X?(y∣x)fX?(x)dx=∫0∞?y!xye?x?βe?βxdx=y!β?∫0∞?xye?(1+β)xdx
Let I(y)=∫0∞xye?(1+β)xdxI(y) = \int_{ 0}^{\infty} x^y e^{-(1+\beta )x} dxI(y)=∫0∞?xye?(1+β)xdx
I(y)=?11+β∫0∞xyde?(1+β)x=?xye?(1+β)x1+β∣0∞+y1+β∫0∞xy?1e?(1+β)xdx=y1+βI(y?1)I(y) = \frac{-1}{1+\beta}\int_{ 0}^{\infty} x^y de^{-(1+\beta )x} = \frac{-x^ye^{-(1+\beta )x}}{1+\beta}|_0^{\infty} + \frac{y}{1+\beta}\int_{ 0}^{\infty} x^{y-1} e^{-(1+\beta )x} dx \\ = \frac{y}{1+\beta}I(y-1)I(y)=1+β?1?∫0∞?xyde?(1+β)x=1+β?xye?(1+β)x?∣0∞?+1+βy?∫0∞?xy?1e?(1+β)xdx=1+βy?I(y?1)
when y=0y = 0y=0,
I(0)=∫0∞e?(1+β)xdx=11+βI(0) = \int_{ 0}^{\infty} e^{-(1+\beta )x} dx = \frac{1}{1 + \beta}I(0)=∫0∞?e?(1+β)xdx=1+β1?
By iteration
I(y)=y1+βI(y?1)=y1+βy?11+βI(y?2)=?=y!(1+β)y+1I(y) = \frac{y}{1+\beta}I(y-1) = \frac{y}{1+\beta} \frac{y-1}{1+\beta}I(y-2) = \cdots = \frac{y!}{(1+\beta)^{y+1}}I(y)=1+βy?I(y?1)=1+βy?1+βy?1?I(y?2)=?=(1+β)y+1y!?
(Alternative I(y)=∫0∞xye?(1+β)xdx=1(1+β)y+1∫0∞(x(1+β))ye?(1+β)xdx(1+β)=Γ(y+1)(1+β)y+1I(y) = \int_{ 0}^{\infty} x^y e^{-(1+\beta )x} dx =\frac{1}{(1+\beta)^{y+1}} \int_{ 0}^{\infty} (x(1+\beta))^y e^{-(1+\beta )x} dx(1+\beta) = \frac{\Gamma(y+1)}{(1+\beta)^{y+1}}I(y)=∫0∞?xye?(1+β)xdx=(1+β)y+11?∫0∞?(x(1+β))ye?(1+β)xdx(1+β)=(1+β)y+1Γ(y+1)? )
So
fY(y)=βy!y!(1+β)y+1=β(1+β)y+1,y=0,1,?f_Y(y) =\frac{\beta}{y!} \frac{y!}{(1+\beta)^{y+1}} = \frac{\beta}{(1+\beta)^{y+1}},y=0,1,\cdotsfY?(y)=y!β?(1+β)y+1y!?=(1+β)y+1β?,y=0,1,?
Joint likelihood of sample is
L(β)=βn(1+β)n+∑i=1nYiln?L(β)=nln?β?(n+∑i=1nYi)ln?(1+β)?ln?L(β)?β=nβ?n+nYˉ1+β=0?β^=1YˉL(\beta) = \frac{\beta^n}{(1+\beta)^{n+\sum_{i=1}^n Y_i}} \\ \ln L(\beta) = n\ln \beta - (n + \sum_{i=1}^n Y_i) \ln (1 + \beta) \\ \frac{\partial \ln L(\beta)}{\partial \beta} = \frac{n}{\beta} - \frac{n + n\bar{Y}}{1 + \beta} = 0 \Rightarrow \hat\beta = \frac{1}{\bar{Y}} L(β)=(1+β)n+∑i=1n?Yi?βn?lnL(β)=nlnβ?(n+i=1∑n?Yi?)ln(1+β)?β?lnL(β)?=βn??1+βn+nYˉ?=0?β^?=Yˉ1?
Part (d)
Consider another set of sample Z1,?,ZnZ_1,\cdots,Z_nZ1?,?,Zn?,
L(β∣Z)L(β∣Y)=βn(1+β)n+∑i=1nZiβn(1+β)n+∑i=1nYi=(1+β)∑i=1nYi?∑i=1nZi\frac{L(\beta|\textbf{Z})}{L(\beta|\textbf{Y})} = \frac{\frac{\beta^n}{(1+\beta)^{n+\sum_{i=1}^n Z_i}}}{\frac{\beta^n}{(1+\beta)^{n+\sum_{i=1}^n Y_i}}} = (1+\beta)^{\sum_{i=1}^n Y_i - \sum_{i=1}^n Z_i}L(β∣Y)L(β∣Z)?=(1+β)n+∑i=1n?Yi?βn?(1+β)n+∑i=1n?Zi?βn??=(1+β)∑i=1n?Yi??∑i=1n?Zi?
Only when ∑i=1nYi=∑i=1nZi\sum_{i=1}^n Y_i= \sum_{i=1}^n Z_i∑i=1n?Yi?=∑i=1n?Zi?, likelihood ratio is independent of β\betaβ, so ∑i=1nYi\sum_{i=1}^n Y_i∑i=1n?Yi? is minimal sufficient statistics.
Part (e)
EY=∑y=0∞yβ(1+β)y+1=1βEY = \sum_{y=0}^{\infty} \frac{y\beta}{(1+\beta)^{y+1}} = \frac{1}{\beta}EY=y=0∑∞?(1+β)y+1yβ?=β1?
By LLN, Yˉ→p1/β\bar{Y} \to_p 1/\betaYˉ→p?1/β. By property of convergence in probability,
1Yˉ→pβ\frac{1}{\bar{Y}} \to_p \betaYˉ1?→p?β
So MLE is consistent.
總結
以上是生活随笔為你收集整理的UA MATH566 统计理论 一个例题 Hierarchical Model的统计性质的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH564 概率论 样本均值的
- 下一篇: UA MATH566 例题 Poisso