UA MATH564 概率论 样本均值的偏度与峰度
UA MATH564 概率論 樣本均值的偏度與峰度
- 偏度
- 峰度
假設X1,?,XnX_1,\cdots,X_nX1?,?,Xn?是一組簡單隨機樣本,Xˉ\bar{X}Xˉ是樣本均值,總體均值為μ\muμ,總體方差為σ2\sigma^2σ2,總體的偏度為γ1\gamma_1γ1?,峰度為γ2\gamma_2γ2?,下面計算樣本均值的偏度γ1,n\gamma_{1,n}γ1,n?與峰度γ2,n\gamma_{2,n}γ2,n?,先給出結論:
γ1,n=γ1n,γ2,n=γ2n+3n(n?1)n2\gamma_{1,n} = \frac{\gamma_1}{\sqrt{n}},\ \ \gamma_{2,n} = \frac{\gamma_2}{n} + \frac{3n(n-1)}{n^2}γ1,n?=n?γ1??,??γ2,n?=nγ2??+n23n(n?1)?
偏度
偏度的定義是
γ1=E[X?μσ]3=1σ3(EX3?3μEX2+3μ2EX?μ3)=1σ3(EX3?3μ(μ2+σ2)+3μ3?μ3)=EX3?3μσ2?μ3σ3\gamma_1 = E \left[ \frac{X-\mu}{\sigma} \right]^3 = \frac{1}{\sigma^3}( EX^3 - 3\mu EX^2 + 3\mu^2 EX - \mu^3) \\ = \frac{1}{\sigma^3}( EX^3 - 3\mu (\mu^2 + \sigma^2) + 3\mu^3 - \mu^3) = \frac{EX^3-3\mu\sigma^2-\mu^3}{\sigma^3}γ1?=E[σX?μ?]3=σ31?(EX3?3μEX2+3μ2EX?μ3)=σ31?(EX3?3μ(μ2+σ2)+3μ3?μ3)=σ3EX3?3μσ2?μ3?
我們知道
EXˉ=μ,Var(Xˉ)=σ2nE\bar{X} = \mu,\ \ Var(\bar{X}) = \frac{\sigma^2}{n}EXˉ=μ,??Var(Xˉ)=nσ2?
因此
γ1,n=EXˉ3?3μσ2/n?μ3σ3/n3/2EXˉ3=1n3E(∑i=1nXi)3\gamma_{1,n} = \frac{E\bar{X}^3-3\mu\sigma^2/n-\mu^3}{\sigma^3/n^{3/2}} \\ E\bar{X}^3 = \frac{1}{n^3} E \left( \sum_{i=1}^n X_i \right)^3γ1,n?=σ3/n3/2EXˉ3?3μσ2/n?μ3?EXˉ3=n31?E(i=1∑n?Xi?)3
注意到(∑i=1nXi)3\left( \sum_{i=1}^n X_i \right)^3(∑i=1n?Xi?)3的展開式一共有n3n^3n3項,其中有An1A_n^1An1?項是Xi3X_i^3Xi3?,有C31C22An2C_3^1C_2^2A_n^2C31?C22?An2?項是Xi2Xj,i≠jX_i^2X_j,i \ne jXi2?Xj?,i?=j,有An3A_n^3An3?項是XiXjXk,i≠j≠kX_iX_jX_k,i \ne j \ne kXi?Xj?Xk?,i?=j?=k
E[XiXjXk]=EXiEXjEXk=μ3E[Xi2Xj]=EXi2EXj=(μ2+σ2)μ=μ3+μσ2E[Xi3]=μ3+3μσ2+γ1σ3E[X_iX_jX_k] = EX_iEX_jEX_k = \mu^3 \\ E[X_i^2X_j] = EX_i^2EX_j = (\mu^2 + \sigma^2)\mu =\mu^3 + \mu \sigma^2 \\ E[X_i^3] = \mu^3 + 3\mu\sigma^2 + \gamma_1 \sigma^3 E[Xi?Xj?Xk?]=EXi?EXj?EXk?=μ3E[Xi2?Xj?]=EXi2?EXj?=(μ2+σ2)μ=μ3+μσ2E[Xi3?]=μ3+3μσ2+γ1?σ3
因此
EXˉ3=n(μ3+3μσ2+γ1σ3)+3n(n?1)(μ3+μσ2)+n(n?1)(n?2)μ3n3=σ3γ1n2+3μσ2n+μ3EXˉ3?3μσ2/n?μ3=σ3γ1n2E\bar{X}^3 = \frac{n(\mu^3 + 3\mu\sigma^2 + \gamma_1 \sigma^3) + 3n(n-1)(\mu^3 + \mu \sigma^2) + n(n-1)(n-2)\mu^3}{n^3} \\ = \frac{\sigma^3\gamma_1}{n^2} + \frac{3\mu\sigma^2}{n}+ \mu^3 \\ E\bar{X}^3 -3\mu\sigma^2/n-\mu^3 = \frac{\sigma^3\gamma_1}{n^2} EXˉ3=n3n(μ3+3μσ2+γ1?σ3)+3n(n?1)(μ3+μσ2)+n(n?1)(n?2)μ3?=n2σ3γ1??+n3μσ2?+μ3EXˉ3?3μσ2/n?μ3=n2σ3γ1??
所以樣本均值的偏度為
γ1,n=γ1n\gamma_{1,n} = \frac{\gamma_1}{\sqrt{n}}γ1,n?=n?γ1??
峰度
偏度的定義是(另一種定義是在這個基礎上減3,3是標準正態分布的峰度,用來作參考)
γ2=E[X?μσ]4=1σ4(EX4?4μEX3+6μ2EX2?4μ3EX+μ4)=1σ4(EX4?4μ(μ3+3μσ2+γ1σ3)+6μ2(μ2+σ2)?4μ4+μ4)=EX4?4μγ1σ3?6μ2σ2?μ4σ4\gamma_2 = E \left[ \frac{X-\mu}{\sigma} \right]^4 = \frac{1}{\sigma^4}( EX^4 - 4\mu EX^3 + 6\mu^2 EX^2 - 4\mu^3EX + \mu^4) \\ = \frac{1}{\sigma^4}( EX^4 - 4\mu (\mu^3 + 3\mu\sigma^2 + \gamma_1 \sigma^3) + 6\mu^2 (\mu^2 + \sigma^2) - 4\mu^4 + \mu^4) \\ = \frac{EX^4 - 4\mu\gamma_1 \sigma^3 - 6\mu^2\sigma^2 - \mu^4}{\sigma^4}γ2?=E[σX?μ?]4=σ41?(EX4?4μEX3+6μ2EX2?4μ3EX+μ4)=σ41?(EX4?4μ(μ3+3μσ2+γ1?σ3)+6μ2(μ2+σ2)?4μ4+μ4)=σ4EX4?4μγ1?σ3?6μ2σ2?μ4?
我們知道
EXˉ=μ,Var(Xˉ)=σ2n,γ1,n=γ1nE\bar{X} = \mu,\ \ Var(\bar{X}) = \frac{\sigma^2}{n}, \ \ \gamma_{1,n} = \frac{\gamma_1}{\sqrt{n}}EXˉ=μ,??Var(Xˉ)=nσ2?,??γ1,n?=n?γ1??
因此
γ2,n=EXˉ4?4μγ1σ3/n2?6μ2σ2/n?μ4σ4/n2EXˉ4=1n4E(∑i=1nXi)4\gamma_{2,n} = \frac{E\bar{X}^4 - 4\mu\gamma_1 \sigma^3/n^2 - 6\mu^2\sigma^2/n - \mu^4}{\sigma^4/n^{2}} \\ E\bar{X}^4 = \frac{1}{n^4} E \left( \sum_{i=1}^n X_i \right)^4γ2,n?=σ4/n2EXˉ4?4μγ1?σ3/n2?6μ2σ2/n?μ4?EXˉ4=n41?E(i=1∑n?Xi?)4
注意到(∑i=1nXi)4\left( \sum_{i=1}^n X_i \right)^4(∑i=1n?Xi?)4的展開式一共有n4n^4n4項,其中有An1A_n^1An1?項是Xi4X_i^4Xi4?,有C42Cn2C_4^2C_n^2C42?Cn2?項是Xi2Xj2,i≠jX_i^2X_j^2,i \ne jXi2?Xj2?,i?=j,有C41C33An2C_4^1C_3^3A_n^2C41?C33?An2?項是Xi3Xj,i≠jX_i^3X_j,i \ne jXi3?Xj?,i?=j,有C42C21C11An3C_4^2C_2^1C_1^1A_n^3C42?C21?C11?An3?項是Xi2XjXk,i≠j≠kX_i^2X_jX_k,i \ne j \ne kXi2?Xj?Xk?,i?=j?=k,有An4A_n^4An4?項是XiXjXkXl,i≠j≠k≠lX_iX_jX_kX_l,i\ne j \ne k \ne lXi?Xj?Xk?Xl?,i?=j?=k?=l
E[XiXjXkXl]=EXiEXjEXkEXl=μ4E[Xi2XjXk]=EXi2EXjEXk=(μ2+σ2)μ2=μ4+μ2σ2E[Xi3Xj]=EXi3EXj=(μ3+3μσ2+γ1σ3)μ=μ4+3μ2σ2+μγ1σ3E[Xi2Xj2]=EXi2EXj2=(μ2+σ2)2=μ4+2μ2σ2+σ4EXi4=σ4γ2+4μγ1σ3+6μ2σ2+μ4E[X_iX_jX_kX_l] = EX_iEX_jEX_k EX_l= \mu^4\\ E[X_i^2X_jX_k] = EX_i^2EX_jEX_k = (\mu^2 + \sigma^2)\mu^2 = \mu^4 + \mu^2 \sigma^2 \\ E[X_i^3X_j] = EX_i^3EX_j = (\mu^3 + 3\mu\sigma^2 + \gamma_1 \sigma^3)\mu =\mu^4 + 3\mu^2 \sigma^2 + \mu \gamma_1 \sigma^3 \\ E[X_i^2X_j^2] = EX_i^2EX_j^2 = (\mu^2 + \sigma^2)^2 = \mu^4 + 2\mu^2 \sigma^2 + \sigma^4 \\ EX_i^4 = \sigma^4 \gamma_2+ 4\mu\gamma_1 \sigma^3 + 6\mu^2\sigma^2 + \mu^4E[Xi?Xj?Xk?Xl?]=EXi?EXj?EXk?EXl?=μ4E[Xi2?Xj?Xk?]=EXi2?EXj?EXk?=(μ2+σ2)μ2=μ4+μ2σ2E[Xi3?Xj?]=EXi3?EXj?=(μ3+3μσ2+γ1?σ3)μ=μ4+3μ2σ2+μγ1?σ3E[Xi2?Xj2?]=EXi2?EXj2?=(μ2+σ2)2=μ4+2μ2σ2+σ4EXi4?=σ4γ2?+4μγ1?σ3+6μ2σ2+μ4
計算
n(σ4γ2+4μγ1σ3+6μ2σ2+μ4)+3n(n?1)(μ4+2μ2σ2+σ4)+4n(n?1)(μ4+3μ2σ2+μγ1σ3)+6n(n?1)(n?2)(μ4+μ2σ2)+n(n?1)(n?2)(n?3)μ4=nσ4γ2+4n2μγ1σ2+3n(n?1)σ4+n4μ4+6n3μ2σ2n(\sigma^4 \gamma_2+ 4\mu\gamma_1 \sigma^3 + 6\mu^2\sigma^2 + \mu^4) + 3n(n-1)( \mu^4 + 2\mu^2 \sigma^2 + \sigma^4) \\+ 4n(n-1)(\mu^4 + 3\mu^2 \sigma^2 + \mu \gamma_1 \sigma^3 ) +6n(n-1)(n-2)(\mu^4 + \mu^2 \sigma^2) \\ + n(n-1)(n-2)(n-3)\mu^4 = n\sigma^4 \gamma_2+4n^2\mu\gamma_1\sigma^2 + 3n(n-1)\sigma^4+ n^4 \mu^4 + 6n^3\mu^2\sigma^2n(σ4γ2?+4μγ1?σ3+6μ2σ2+μ4)+3n(n?1)(μ4+2μ2σ2+σ4)+4n(n?1)(μ4+3μ2σ2+μγ1?σ3)+6n(n?1)(n?2)(μ4+μ2σ2)+n(n?1)(n?2)(n?3)μ4=nσ4γ2?+4n2μγ1?σ2+3n(n?1)σ4+n4μ4+6n3μ2σ2
也就是
EXˉ4=nσ4γ2+4n2μγ1σ2+3n(n?1)σ4+n4μ4+6n3μ2σ2n4=σ4n3γ2+4μγ1σ2n2+μ4+6nμ2σ2+3n(n?1)n4σ4E\bar{X}^4 = \frac{n\sigma^4 \gamma_2+4n^2\mu\gamma_1\sigma^2 + 3n(n-1)\sigma^4+ n^4 \mu^4 + 6n^3\mu^2\sigma^2}{n^4} \\ = \frac{\sigma^4}{n^3}\gamma_2 + \frac{4\mu\gamma_1\sigma^2}{n^2} + \mu^4 + \frac{6}{n}\mu^2\sigma^2 + \frac{3n(n-1)}{n^4}\sigma^4EXˉ4=n4nσ4γ2?+4n2μγ1?σ2+3n(n?1)σ4+n4μ4+6n3μ2σ2?=n3σ4?γ2?+n24μγ1?σ2?+μ4+n6?μ2σ2+n43n(n?1)?σ4
因此
γ2,n=γ2n+3n(n?1)n2\gamma_{2,n} = \frac{\gamma_2}{n} + \frac{3n(n-1)}{n^2}γ2,n?=nγ2??+n23n(n?1)?
總結
以上是生活随笔為你收集整理的UA MATH564 概率论 样本均值的偏度与峰度的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH564 概率论 标准二元正
- 下一篇: UA MATH566 统计理论 一个例题