UA MATH564 概率不等式 QE练习题
UA MATH564 概率不等式 QE練習題
- 2018年5月第三題
2018年5月第三題
Part a
If x<tx<tx<t, 1[t,+∞)(x)=01_{[t,+\infty)}(x) = 01[t,+∞)?(x)=0,
1[t,+∞)(x)≤g(x)g(t)?0≤g(x)g(t)1_{[t,+\infty)}(x) \le \frac{g(x)}{g(t)} \Leftrightarrow 0 \le \frac{g(x)}{g(t)} 1[t,+∞)?(x)≤g(t)g(x)??0≤g(t)g(x)?
Notice ggg is a non-decreasing function defined in (0,+∞)(0,+\infty)(0,+∞), if g(0+)g(0^+)g(0+) is negative, then the inequality above may not hold for any fixed t>0t>0t>0 and arbitrary x<tx<tx<t. Hence, ggg should be a positive function.
If x≥tx \ge tx≥t, 1[t,+∞)(x)=11_{[t,+\infty)}(x) = 11[t,+∞)?(x)=1,
1[t,+∞)(x)≤g(x)g(t)?1≤g(x)g(t)1_{[t,+\infty)}(x) \le \frac{g(x)}{g(t)} \Leftrightarrow 1 \le \frac{g(x)}{g(t)} 1[t,+∞)?(x)≤g(t)g(x)??1≤g(t)g(x)?
Since ggg is non-decreasing, g(x)≥g(t)g(x) \ge g(t)g(x)≥g(t). Suppose ggg is a positive function,
1[t,+∞)(x)≤g(x)g(t)1_{[t,+\infty)}(x) \le \frac{g(x)}{g(t)}1[t,+∞)?(x)≤g(t)g(x)?
Part b
Suppose XXX is random variable defined on probability space (R+,B(R+),P)(\mathbb{R}^+,\mathcal{B}(\mathbb{R}^+),P)(R+,B(R+),P). By monotonicity of intergral
∫0∞1[t,+∞)(x)P(dx)≤∫0∞g(x)g(t)P(dx)\int_0^{\infty} 1_{[t,+\infty)}(x)P(dx) \le \int_0^{\infty} \frac{g(x)}{g(t)}P(dx)∫0∞?1[t,+∞)?(x)P(dx)≤∫0∞?g(t)g(x)?P(dx)
Notice
∫0∞1[t,+∞)(x)P(dx)=P(X>t)∫0∞g(x)g(t)P(dx)=Eg(X)g(t)\int_0^{\infty} 1_{[t,+\infty)}(x)P(dx) = P(X>t) \\ \int_0^{\infty} \frac{g(x)}{g(t)}P(dx) = \frac{Eg(X)}{g(t)}∫0∞?1[t,+∞)?(x)P(dx)=P(X>t)∫0∞?g(t)g(x)?P(dx)=g(t)Eg(X)?
So
P(X>t)≤Eg(X)g(t)P(X>t) \le \frac{Eg(X)}{g(t)}P(X>t)≤g(t)Eg(X)?
Part c
Let g(x)=esxg(x) = e^{sx}g(x)=esx and then
Eg(Y)=EesY≤eσ2s22,?s∈REg(Y) = Ee^{sY} \le e^{\frac{\sigma^2s^2}{2}},\forall s \in \mathbb{R}Eg(Y)=EesY≤e2σ2s2?,?s∈R
By inequality in Part b,
P(Y>t)≤Eg(Y)g(t)≤eσ2s22est=eσ2s22?stP(Y>t) \le \frac{Eg(Y)}{g(t)} \le \frac{e^{\frac{\sigma^2s^2}{2}}}{e^{st}} = e^{\frac{\sigma^2s^2}{2} - st}P(Y>t)≤g(t)Eg(Y)?≤este2σ2s2??=e2σ2s2??st
When s=tσ2s = \frac{t}{\sigma^2}s=σ2t?, σ2s22?st\frac{\sigma^2s^2}{2} - st2σ2s2??st reaches minimum ?t22σ2-\frac{t^2}{2\sigma^2}?2σ2t2?. Inequality above holds for all s∈Rs \in \mathbb{R}s∈R,
P(Y>t)≤inf?s∈Reσ2s22?st=e?t22σ2P(Y>t) \le \inf_{s\in \mathbb{R}} e^{\frac{\sigma^2s^2}{2} - st} = e^{-\frac{t^2}{2\sigma^2}}P(Y>t)≤s∈Rinf?e2σ2s2??st=e?2σ2t2?
總結
以上是生活随笔為你收集整理的UA MATH564 概率不等式 QE练习题的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH571A QE练习 R语言
- 下一篇: UA MATH564 概率论 QE练习