UA MATH 571B 回归 QE练习题 一元线性回归理论
UA MATH 571B 回歸 QE練習(xí)題 一元線性回歸理論
- 2015/1/5
- 2015/5/5
- 2016/5/6
- 2017/1/5
- 2017/5/6
這是2015年1月第五題,2015年5月第五題,2016年5月第六題,2017年1月第五題,2017年5月第六題。QE methodology的理論題目范圍就是一元線性回歸的相關(guān)理論,具體可以參考UA MATH571A 一元線性回歸I 模型設(shè)定與估計(jì)、UA MATH571A 一元線性回歸II 統(tǒng)計(jì)推斷1、UA MATH571A 一元線性回歸II 統(tǒng)計(jì)推斷2、UA MATH571A 一元線性回歸III 方差分析與相關(guān)性分析
2015/1/5
注意這道題題干有錯(cuò),Yˉ\bar{Y}Yˉ后面應(yīng)該是減號(hào)。
Want to show E[b0]=β0E[b_0] = \beta_0E[b0?]=β0?. Let’s first analyze the origin of randomness in b0b_0b0?. Define
ki=Xi?Xˉ∑i=1n(Xi?Xˉ)2k_i = \frac{X_i - \bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2}ki?=∑i=1n?(Xi??Xˉ)2Xi??Xˉ?
so we can rewrite b0b_0b0? as
b0=Yˉ?Xˉ∑i=1nkiYi=∑i=1n(1n?kiXˉ)Yi=∑i=1n(1n?kiXˉ)(β0+β1Xi+?i)=β0∑i=1n(1n?kiXˉ)+β1∑i=1nXi(1n?kiXˉ)+∑i=1n(1n?kiXˉ)?ib_0 = \bar{Y} - \bar{X}\sum_{i=1}^n k_i Y_i = \sum_{i=1}^n \left( \frac{1}{n} - k_i\bar{X} \right) Y_i = \sum_{i=1}^n \left( \frac{1}{n} - k_i\bar{X} \right) (\beta_0 + \beta_1 X_i + \epsilon_i) \\ = \beta_0 \sum_{i=1}^n \left( \frac{1}{n} - k_i\bar{X} \right) + \beta_1 \sum_{i=1}^n X_i\left( \frac{1}{n} - k_i\bar{X} \right) + \sum_{i=1}^n \left( \frac{1}{n} - k_i\bar{X} \right) \epsilon_ib0?=Yˉ?Xˉi=1∑n?ki?Yi?=i=1∑n?(n1??ki?Xˉ)Yi?=i=1∑n?(n1??ki?Xˉ)(β0?+β1?Xi?+?i?)=β0?i=1∑n?(n1??ki?Xˉ)+β1?i=1∑n?Xi?(n1??ki?Xˉ)+i=1∑n?(n1??ki?Xˉ)?i?
The first two terms are constant, and for the third term
E∑i=1n(1n?kiXˉ)?i=∑i=1n(1n?kiXˉ)E?i=∑i=1n(1n?kiXˉ)×0=0E \sum_{i=1}^n \left( \frac{1}{n} - k_i\bar{X} \right) \epsilon_i = \sum_{i=1}^n \left( \frac{1}{n} - k_i\bar{X} \right) E\epsilon_i = \sum_{i=1}^n \left( \frac{1}{n} - k_i\bar{X} \right) \times 0 = 0Ei=1∑n?(n1??ki?Xˉ)?i?=i=1∑n?(n1??ki?Xˉ)E?i?=i=1∑n?(n1??ki?Xˉ)×0=0
Now simplify the first two terms.
∑i=1n(1n?kiXˉ)=∑i=1n1n?Xˉ∑i=1nki=1∑i=1nXi(1n?kiXˉ)=Xˉ?Xˉ∑i=1nkiXi=0\sum_{i=1}^n \left( \frac{1}{n} - k_i\bar{X} \right) = \sum_{i=1}^n \frac{1}{n} - \bar{X} \sum_{i=1}^n k_i = 1 \\ \sum_{i=1}^n X_i\left( \frac{1}{n} - k_i\bar{X} \right) = \bar{X} - \bar{X}\sum_{i=1}^n k_i X_i = 0i=1∑n?(n1??ki?Xˉ)=i=1∑n?n1??Xˉi=1∑n?ki?=1i=1∑n?Xi?(n1??ki?Xˉ)=Xˉ?Xˉi=1∑n?ki?Xi?=0
So E[b0]=β0E[b_0] = \beta_0E[b0?]=β0?.
注意kik_iki?是一個(gè)非常常用的構(gòu)造,它的求和有幾個(gè)很重要的性質(zhì),可以參考上面的博文。
2015/5/5
暫時(shí)放棄這個(gè)題,兩周后再做
2016/5/6
Part a
Define
ki=Xi∑i=1nXi2k_i = \frac{X_i}{\sum_{i=1}^n X_i^2}ki?=∑i=1n?Xi2?Xi??
and we can rewrite b1b_1b1? as
b1=∑i=1nkiYib_1 = \sum_{i=1}^n k_i Y_ib1?=i=1∑n?ki?Yi?
Let’s analyze the randomness of b1b_1b1?, note that Yi=β1Xi+?iY_i= \beta_1X_i + \epsilon_iYi?=β1?Xi?+?i?,
b1=∑i=1nki(β1Xi+?i)=β1∑i=1nkiXi+∑i=1nki?ib_1 = \sum_{i=1}^n k_i (\beta_1 X_i + \epsilon_i) = \beta_1 \sum_{i=1}^n k_i X_i + \sum_{i=1}^{n}k_i\epsilon_ib1?=i=1∑n?ki?(β1?Xi?+?i?)=β1?i=1∑n?ki?Xi?+i=1∑n?ki??i?
Compute
∑i=1nkiXi=∑i=1nXi2∑j=1nXj2=1?b1=β1+∑i=1nki?i~N(β1,σ2∑i=1nki2)\sum_{i=1}^n k_i X_i = \sum_{i=1}^n \frac{X_i^2}{\sum_{j=1}^n X_j^2} = 1 \\ \Rightarrow b_1 = \beta_1 + \sum_{i=1}^n k_i \epsilon_i \sim N(\beta_1,\sigma^2\sum_{i=1}^n k_i^2 )i=1∑n?ki?Xi?=i=1∑n?∑j=1n?Xj2?Xi2??=1?b1?=β1?+i=1∑n?ki??i?~N(β1?,σ2i=1∑n?ki2?)
Compute
∑i=1nki2=∑i=1nXi2[∑j=1nXj2]2=1∑i=1nXi2?b1~N(β1,σ2∑i=1nXi2)\sum_{i=1}^n k_i^2 = \sum_{i=1}^n \frac{X_i^2}{[\sum_{j=1}^n X_j^2]^2} = \frac{1}{\sum_{i=1}^n X_i^2} \Rightarrow b_1 \sim N(\beta_1,\frac{\sigma^2}{\sum_{i=1}^n X_i^2})i=1∑n?ki2?=i=1∑n?[∑j=1n?Xj2?]2Xi2??=∑i=1n?Xi2?1??b1?~N(β1?,∑i=1n?Xi2?σ2?)
Part b
Y^h=∑i=1nkiYiXh\hat{Y}_h = \sum_{i=1}^n k_iY_iX_hY^h?=i=1∑n?ki?Yi?Xh?
Part c
Var(Y^h)=σ2Xh2∑i=1nXi2Var(\hat{Y}_h) = \frac{\sigma^2X_h^2}{\sum_{i=1}^n X_i^2}Var(Y^h?)=∑i=1n?Xi2?σ2Xh2??
2017/1/5
Part a
E[Y]=β0+β1ξ=0?ξ=?β0β1E[Y] = \beta_0 + \beta_1 \xi = 0 \Rightarrow \xi = -\frac{\beta_0}{\beta_1}E[Y]=β0?+β1?ξ=0?ξ=?β1?β0??
Part b
ξ^=?β^0β^1=?∑i=1n(1n?kiXˉ)Yi∑i=1nkiYi\hat{\xi} = -\frac{\hat{\beta}_0}{\hat\beta_1}= -\frac{\sum_{i=1}^n (\frac{1}{n} - k_i\bar{X})Y_i}{\sum_{i=1}^n k_iY_i}ξ^?=?β^?1?β^?0??=?∑i=1n?ki?Yi?∑i=1n?(n1??ki?Xˉ)Yi??
where β^0\hat\beta_0β^?0? and β^1\hat\beta_1β^?1? are MLE of β0\beta_0β0? and β1\beta_1β1?, and
ki=Xi?Xˉ∑i=1n(Xi?Xˉ)2k_i = \frac{X_i - \bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2}ki?=∑i=1n?(Xi??Xˉ)2Xi??Xˉ?
Part c
Let ξ^=g(β^0,β^1)=?β^0β^1\hat{\xi} = g(\hat\beta_0,\hat\beta_1) =-\frac{\hat{\beta}_0}{\hat\beta_1}ξ^?=g(β^?0?,β^?1?)=?β^?1?β^?0??. Notice E[β^0]=β0E[\hat{\beta}_0] = \beta_0E[β^?0?]=β0? and E[β^1]=β1E[\hat{\beta}_1] = \beta_1E[β^?1?]=β1? and compute
gβ^0′=?1β1,gβ^1′=β0β12g'_{\hat\beta_0} = -\frac{1}{\beta_1},\ \ g'_{\hat\beta_1} = \frac{\beta_0}{\beta_1^2}gβ^?0?′?=?β1?1?,??gβ^?1?′?=β12?β0??
(i)
E[ξ^]≈?β0β1+0+0=ξE[\hat\xi] \approx -\frac{\beta_0}{\beta_1} + 0 + 0= \xiE[ξ^?]≈?β1?β0??+0+0=ξ
(ii)
Var(ξ^)≈σ2β12∑i=1n(Xi?Xˉ)2+σ2β02β14(1n+Xˉ2∑i=1n(Xi?Xˉ)2)?2β0β13Cov(β^0,β^1)Var(\hat\xi) \approx \frac{\sigma^2}{\beta_1^2\sum_{i=1}^n (X_i-\bar{X})^2} + \sigma^2\frac{\beta_0^2}{\beta_1^4}(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i-\bar{X})^2}) - \\ \frac{2\beta_0}{\beta_1^3}Cov(\hat\beta_0,\hat\beta_1)Var(ξ^?)≈β12?∑i=1n?(Xi??Xˉ)2σ2?+σ2β14?β02??(n1?+∑i=1n?(Xi??Xˉ)2Xˉ2?)?β13?2β0??Cov(β^?0?,β^?1?)
Compute
Cov(β^0,β^1)=Cov(β0+∑i=1n(1/n?kiXˉ)Yi,β1+∑i=1nkiYi)=(1n∑i=1nki?Xˉ∑i=1nki2)σ2=?Xˉσ2∑i=1n(Xi?Xˉ)2Cov(\hat\beta_0,\hat\beta_1) = Cov(\beta_0 + \sum_{i=1}^n (1/n - k_i\bar{X})Y_i,\beta_1 + \sum_{i=1}^n k_i Y_i) \\ = (\frac{1}{n}\sum_{i=1}^n k_i - \bar{X}\sum_{i=1}^n k_i^2)\sigma^2 = -\frac{\bar{X}\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}Cov(β^?0?,β^?1?)=Cov(β0?+i=1∑n?(1/n?ki?Xˉ)Yi?,β1?+i=1∑n?ki?Yi?)=(n1?i=1∑n?ki??Xˉi=1∑n?ki2?)σ2=?∑i=1n?(Xi??Xˉ)2Xˉσ2?
2017/5/6
注意!這道題用相關(guān)結(jié)論就非常簡(jiǎn)單,可以口算寫(xiě)出答案,但標(biāo)準(zhǔn)答案是從頭開(kāi)始推的,LS估計(jì)的分布要自己推!
Part a
E[Y]=1+β1ξ=0?ξ=?1β1ξ^=g(β1^)??1β^1=?1∑i=1nkiYiE[Y] = 1 + \beta_1 \xi = 0 \Rightarrow \xi = -\frac{1}{\beta_1} \\ \hat{\xi} = g(\hat{\beta_1}) \triangleq -\frac{1}{\hat\beta_1} = -\frac{1}{\sum_{i=1}^n k_iY_i}E[Y]=1+β1?ξ=0?ξ=?β1?1?ξ^?=g(β1?^?)??β^?1?1?=?∑i=1n?ki?Yi?1?
Part b
E[ξ^]≈?1β1=ξE[\hat\xi] \approx -\frac{1}{\beta_1} = \xiE[ξ^?]≈?β1?1?=ξ
Part c
E[ξ^]=ξ+σ2ξ3∑i=1n(Xi?Xˉ)E[\hat\xi] = \xi + \frac{\sigma^2\xi^3}{\sum_{i=1}^n (X_i-\bar{X})}E[ξ^?]=ξ+∑i=1n?(Xi??Xˉ)σ2ξ3?
總結(jié)
以上是生活随笔為你收集整理的UA MATH 571B 回归 QE练习题 一元线性回归理论的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: UA MATH571B 试验设计 2k析
- 下一篇: UA MATH571B 2K析因设计 S