Li原子核外有3個電子,讓他們的軌道分別是(1,0,0)和(2,0,0),用類氫軌道代入,3個電子的軌道分別是
其中z是核電荷數等于3,a0是第一層軌道半徑等于1,a1是第二層軌道半徑等于4.
將能量的狄拉克符號展開
三個電子的動能+勢能+庫侖排斥能-交換能
其中E1=E2,J13=J23,K13=K23
先計算動能和勢能
計算庫侖積分,因為3個電子都是s軌道所以可以用公式
因此
?
同樣的方法J13=J23=0.18
?
計算交換積分
設Ψ3是α軌道,則電子3的β軌道是
因為都是s軌道所以同樣可以用
因此
?
K23=K13
?
因此能級
E=-4.5-4.5-0.4921+0.18+0.18+1.875-0.034-0.034=-7.32Hartrees
用Hartree-Fork方法計算得到能量是-7.4327*,計算值是HF方法的98.5%
*徐光憲-《量子化學》p873
python代碼
?
import sympy
import math
from sympy import symbols, cancela = sympy.Symbol('a')
e = sympy.Symbol('e')
m = sympy.Symbol('m')
h = sympy.Symbol('h')
l = sympy.Symbol('l')
lp = sympy.Symbol('lp')
r = sympy.Symbol('r')
EE = sympy.Symbol('EE')
R = sympy.Symbol('R')
r1 = sympy.Symbol('r1')
r2 = sympy.Symbol('r2')
r3 = sympy.Symbol('r3')μ = sympy.Symbol('μ')
v = sympy.Symbol('v')α = sympy.Symbol('α')
β = sympy.Symbol('β')x = sympy.Symbol('x')
y = sympy.Symbol('y')
z = sympy.Symbol('z')θ1= sympy.Symbol('θ1')
θ2= sympy.Symbol('θ2')
Φ1= sympy.Symbol('Φ1')
Φ2= sympy.Symbol('Φ2')θ= sympy.Symbol('θ')
Ψ= sympy.Symbol('Ψ')
Φ= sympy.Symbol('Φ')
pi=sympy.Symbol('pi')
E=sympy.Symbol('E')
I=sympy.Symbol('I')
sin=sympy.Symbol('sin')
cos=sympy.Symbol('cos')
diff=sympy.Symbol('diff')
integrate=sympy.Symbol('integrate')pi=sympy.pi
E=sympy.E
sin=sympy.sin
cos=sympy.cos
diff=sympy.diff
integrate=sympy.integrate#Li原子基態能級def hin( fx1 ,z ):fx = fx1z=z# 拉普拉斯算符f1 = (1 / (r * r)) * diff((r * r * diff(fx, r)), r)f2 = (1 / (r * r * sin(θ))) * diff((sin(θ) * diff(fx, θ)), θ)f3 = (1 / (r * r * sin(θ) * sin(θ))) * diff(fx, Φ, Φ)f8 = (-1 / 2) * (f1 + f2 + f3) * fx# print ( f1 )# print ( f2 )# print ( f3 )# print ( f8 )# 球坐標積分 動能f9 = (integrate((integrate(integrate(f8 * r * r * sin(θ), (r, 0, float('inf'))), (θ, 0, pi))), (Φ, 0, 2 * pi)))# print(f9)f10 = fx * (-z / r) * fx# 勢能f11 = (integrate((integrate(integrate(f10 * r * r * sin(θ), (r, 0, float('inf'))), (θ, 0, pi))), (Φ, 0, 2 * pi)))# print(f11)print("H", f9 + f11)return f9 + f11def jin (fr1 ,fr2 ,z):z=zf21 = fr1 * fr2 * (1 / r1) * fr1 * fr2 * r1 * r1 * r2 * r2f22 = fr1 * fr2 * (1 / r2) * fr1 * fr2 * r1 * r1 * r2 * r2f23 = (integrate(f21, (r2, 0, r1)))f24 = (integrate(f22, (r2, r1, float('inf'))))f25 = (16 * pi ** (2) * integrate(f24 + f23, (r1, 0, float('inf'))))# print("f23",f23)# print("f24",f24)print("J", f25)return f25def kin (fr1,fr2,fr3,fr4 ,z):z=z# 交換積分#fr1 = (z) ** (1.5) * sympy.exp(-z * r1) * pi ** (-0.5)#fr2 = (z) ** (1.5) * sympy.exp(-z * r2) * pi ** (-0.5)#fr3 = (z) ** (1.5) * sympy.exp(-z * r2) * pi ** (-0.5)#fr4 = (z) ** (1.5) * sympy.exp(-z * r1) * pi ** (-0.5)f21 = fr1 * fr2 * (1 / r1) * fr3 * fr4 * r1 * r1 * r2 * r2f22 = fr1 * fr2 * (1 / r2) * fr3 * fr4 * r1 * r1 * r2 * r2f23 = (integrate(f21, (r2, 0, r1)))f24 = (integrate(f22, (r2, r1, float('inf'))))f36 = (16 * pi ** (2) * integrate(f24 + f23, (r1, 0, float('inf'))))# print("f23",f23)# print("f24",f24)print("K", f36)return f36z=3a0=1
a1=4*a0fx1=(z/a0)**(1.5)*2*sympy.exp(-z*r/a0 )*(4*pi)**(-0.5)
fx2=(z/( 2*a1))**(1.5)*(2-z*r/a1)*sympy.exp(-z*r/(2*a1) )*(4*pi)**(-0.5)fj1 = (z/a0)**(1.5)*2*sympy.exp(-z*r1/a0 )*(4*pi)**(-0.5)
fj2 = (z/a0)**(1.5)*2*sympy.exp(-z*r2/a0 )*(4*pi)**(-0.5)fj3=(z/( 2*a1))**(1.5)*(2-z*r1/a1)*sympy.exp(-z*r1/(2*a1) )*(4*pi)**(-0.5)
fj4=(z/( 2*a1))**(1.5)*(2-z*r2/a1)*sympy.exp(-z*r2/(2*a1) )*(4*pi)**(-0.5)fh=hin(fx1,z)*2+hin(fx2,z)fj=jin(fj1,fj2,z)+jin(fj2,fj3,z)*2fk=kin(fj1,fj3,fj2,fj4,z)*2print( fh+fj-fk , (fh+fj-fk)/7.4327 )
?
總結
以上是生活随笔為你收集整理的用类氢轨道计算交换积分和Li原子2S谱项能级的全部內容,希望文章能夠幫你解決所遇到的問題。
如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。