DL之Mask R-CNN:2018.6.26世界杯阿根廷队VS尼日利亚比赛2:1实现Mask R-CNN目标检测
生活随笔
收集整理的這篇文章主要介紹了
DL之Mask R-CNN:2018.6.26世界杯阿根廷队VS尼日利亚比赛2:1实现Mask R-CNN目标检测
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
DL之Mask R-CNN:2018.6.26世界杯阿根廷隊(duì)VS尼日利亞比賽2:1實(shí)現(xiàn)Mask R-CNN目標(biāo)檢測(cè)
?
?
目錄
輸出結(jié)果
人身檢測(cè)
核心代碼
?
?
?
輸出結(jié)果
先上目標(biāo)檢測(cè)結(jié)果
人身檢測(cè)
觀眾席:眾里尋他千百度,驀然回首,那人卻在,燈火闌珊處。藏得再深也能找到你……
?
核心代碼
import os import sys import random import math import numpy as np import skimage.io import matplotlib import matplotlib.pyplot as plt# Root directory of the project ROOT_DIR = os.path.abspath("../")# Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize # Import COCO config sys.path.append(os.path.join(ROOT_DIR, "samples/coco/")) # To find local version import coco# Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs")# Local path to trained weights file COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed if not os.path.exists(COCO_MODEL_PATH):utils.download_trained_weights(COCO_MODEL_PATH)# Directory of images to run detection on IMAGE_DIR = os.path.join(ROOT_DIR, "images01")class InferenceConfig(coco.CocoConfig):# Set batch size to 1 since we'll be running inference on# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPUGPU_COUNT = 1IMAGES_PER_GPU = 1config = InferenceConfig() config.display()#Create Model and Load Trained Weights # Create model object in inference mode. model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)# Load weights trained on MS-COCO model.load_weights(COCO_MODEL_PATH, by_name=True) Configurations: BACKBONE resnet101 BACKBONE_STRIDES [4, 8, 16, 32, 64] BATCH_SIZE 1 BBOX_STD_DEV [0.1 0.1 0.2 0.2] COMPUTE_BACKBONE_SHAPE None DETECTION_MAX_INSTANCES 100 DETECTION_MIN_CONFIDENCE 0.7 DETECTION_NMS_THRESHOLD 0.3 FPN_CLASSIF_FC_LAYERS_SIZE 1024 GPU_COUNT 1 GRADIENT_CLIP_NORM 5.0 IMAGES_PER_GPU 1 IMAGE_MAX_DIM 1024 IMAGE_META_SIZE 93 IMAGE_MIN_DIM 800 IMAGE_MIN_SCALE 0 IMAGE_RESIZE_MODE square IMAGE_SHAPE [1024 1024 3] LEARNING_MOMENTUM 0.9 LEARNING_RATE 0.001 LOSS_WEIGHTS {'rpn_class_loss': 1.0, 'rpn_bbox_loss': 1.0, 'mrcnn_class_loss': 1.0, 'mrcnn_bbox_loss': 1.0, 'mrcnn_mask_loss': 1.0} MASK_POOL_SIZE 14 MASK_SHAPE [28, 28] MAX_GT_INSTANCES 100 MEAN_PIXEL [123.7 116.8 103.9] MINI_MASK_SHAPE (56, 56) NAME coco NUM_CLASSES 81 POOL_SIZE 7 POST_NMS_ROIS_INFERENCE 1000 POST_NMS_ROIS_TRAINING 2000 ROI_POSITIVE_RATIO 0.33 RPN_ANCHOR_RATIOS [0.5, 1, 2] RPN_ANCHOR_SCALES (32, 64, 128, 256, 512) RPN_ANCHOR_STRIDE 1 RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2] RPN_NMS_THRESHOLD 0.7 RPN_TRAIN_ANCHORS_PER_IMAGE 256 STEPS_PER_EPOCH 1000 TOP_DOWN_PYRAMID_SIZE 256 TRAIN_BN False TRAIN_ROIS_PER_IMAGE 200 USE_MINI_MASK True USE_RPN_ROIS True VALIDATION_STEPS 50 WEIGHT_DECAY 0.0001 Processing 1 images image shape: (506, 900, 3) min: 0.00000 max: 255.00000 uint8 molded_images shape: (1, 1024, 1024, 3) min: -123.70000 max: 151.10000 float64 image_metas shape: (1, 93) min: 0.00000 max: 1024.00000 float64 anchors shape: (1, 261888, 4) min: -0.35390 max: 1.29134 float32?
?
?
?
?
?
?
?
總結(jié)
以上是生活随笔為你收集整理的DL之Mask R-CNN:2018.6.26世界杯阿根廷队VS尼日利亚比赛2:1实现Mask R-CNN目标检测的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: Keras之Mask R-CNN:《极限
- 下一篇: ML之ECS:利用ECS的PAI进行傻瓜