【JUC】JDK1.8源码分析之ConcurrentHashMap
一、前言
最近幾天忙著做點別的東西,今天終于有時間分析源碼了,看源碼感覺很爽,并且發現ConcurrentHashMap在JDK1.8版本與之前的版本在并發控制上存在很大的差別,很有必要進行認真的分析,下面進行源碼分析。
二、ConcurrentHashMap數據結構
之前已經提及過,ConcurrentHashMap相比HashMap而言,是多線程安全的,其底層數據與HashMap的數據結構相同,數據結構如下
說明:ConcurrentHashMap的數據結構(數組+鏈表+紅黑樹),桶中的結構可能是鏈表,也可能是紅黑樹,紅黑樹是為了提高查找效率。
?三、ConcurrentHashMap源碼分析
?3.1 類的繼承關系
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>implements ConcurrentMap<K,V>, Serializable {}
? 說明:ConcurrentHashMap繼承了AbstractMap抽象類,該抽象類定義了一些基本操作,同時,也實現了ConcurrentMap接口,ConcurrentMap接口也定義了一系列操作,實現了Serializable接口表示ConcurrentHashMap可以被序列化。
?3.2 類的內部類
?ConcurrentHashMap包含了很多內部類,其中主要的內部類框架圖如下圖所示
說明:可以看到,ConcurrentHashMap的內部類非常的龐大,第二個圖是在JDK1.8下增加的類,下面對其中主要的內部類進行分析和講解。
1. Node類
Node類主要用于存儲具體鍵值對,其子類有ForwardingNode、ReservationNode、TreeNode和TreeBin四個子類。四個子類具體的代碼在之后的具體例子中進行分析講解。
2. Traverser類
Traverser類主要用于遍歷操作,其子類有BaseIterator、KeySpliterator、ValueSpliterator、EntrySpliterator四個類,BaseIterator用于遍歷操作。KeySplitertor、ValueSpliterator、EntrySpliterator則用于鍵、值、鍵值對的劃分。
3. CollectionView類
CollectionView抽象類主要定義了視圖操作,其子類KeySetView、ValueSetView、EntrySetView分別表示鍵視圖、值視圖、鍵值對視圖。對視圖均可以進行操作。
4. Segment類
Segment類在JDK1.8中與之前的版本的JDK作用存在很大的差別,JDK1.8下,其在普通的ConcurrentHashMap操作中已經沒有失效,其在序列化與反序列化的時候會發揮作用。
5. CounterCell
CounterCell類主要用于對baseCount的計數。
3.3 類的屬性
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>implements ConcurrentMap<K,V>, Serializable {private static final long serialVersionUID = 7249069246763182397L;// 表的最大容量private static final int MAXIMUM_CAPACITY = 1 << 30;// 默認表的大小private static final int DEFAULT_CAPACITY = 16;// 最大數組大小static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;// 默認并發數private static final int DEFAULT_CONCURRENCY_LEVEL = 16;// 裝載因子private static final float LOAD_FACTOR = 0.75f;// 轉化為紅黑樹的閾值static final int TREEIFY_THRESHOLD = 8;// 由紅黑樹轉化為鏈表的閾值static final int UNTREEIFY_THRESHOLD = 6;// 轉化為紅黑樹的表的最小容量static final int MIN_TREEIFY_CAPACITY = 64;// 每次進行轉移的最小值private static final int MIN_TRANSFER_STRIDE = 16;// 生成sizeCtl所使用的bit位數private static int RESIZE_STAMP_BITS = 16;// 進行擴容所允許的最大線程數private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;// 記錄sizeCtl中的大小所需要進行的偏移位數private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; // 一系列的標識static final int MOVED = -1; // hash for forwarding nodesstatic final int TREEBIN = -2; // hash for roots of treesstatic final int RESERVED = -3; // hash for transient reservationsstatic final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash// /** Number of CPUS, to place bounds on some sizings */// 獲取可用的CPU個數static final int NCPU = Runtime.getRuntime().availableProcessors();// /** For serialization compatibility. */// 進行序列化的屬性private static final ObjectStreamField[] serialPersistentFields = {new ObjectStreamField("segments", Segment[].class),new ObjectStreamField("segmentMask", Integer.TYPE),new ObjectStreamField("segmentShift", Integer.TYPE)};// 表transient volatile Node<K,V>[] table;// 下一個表private transient volatile Node<K,V>[] nextTable;// /*** Base counter value, used mainly when there is no contention,* but also as a fallback during table initialization* races. Updated via CAS.*/// 基本計數private transient volatile long baseCount;// /*** Table initialization and resizing control. When negative, the* table is being initialized or resized: -1 for initialization,* else -(1 + the number of active resizing threads). Otherwise,* when table is null, holds the initial table size to use upon* creation, or 0 for default. After initialization, holds the* next element count value upon which to resize the table.*/// 對表初始化和擴容控制private transient volatile int sizeCtl;/*** The next table index (plus one) to split while resizing.*/// 擴容下另一個表的索引private transient volatile int transferIndex;/*** Spinlock (locked via CAS) used when resizing and/or creating CounterCells.*/// 旋轉鎖private transient volatile int cellsBusy;/*** Table of counter cells. When non-null, size is a power of 2.*/// counterCell表private transient volatile CounterCell[] counterCells;// views// 視圖private transient KeySetView<K,V> keySet;private transient ValuesView<K,V> values;private transient EntrySetView<K,V> entrySet;// Unsafe mechanicsprivate static final sun.misc.Unsafe U;private static final long SIZECTL;private static final long TRANSFERINDEX;private static final long BASECOUNT;private static final long CELLSBUSY;private static final long CELLVALUE;private static final long ABASE;private static final int ASHIFT;static {try {U = sun.misc.Unsafe.getUnsafe();Class<?> k = ConcurrentHashMap.class;SIZECTL = U.objectFieldOffset(k.getDeclaredField("sizeCtl"));TRANSFERINDEX = U.objectFieldOffset(k.getDeclaredField("transferIndex"));BASECOUNT = U.objectFieldOffset(k.getDeclaredField("baseCount"));CELLSBUSY = U.objectFieldOffset(k.getDeclaredField("cellsBusy"));Class<?> ck = CounterCell.class;CELLVALUE = U.objectFieldOffset(ck.getDeclaredField("value"));Class<?> ak = Node[].class;ABASE = U.arrayBaseOffset(ak);int scale = U.arrayIndexScale(ak);if ((scale & (scale - 1)) != 0)throw new Error("data type scale not a power of two");ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);} catch (Exception e) {throw new Error(e);}}}
說明:ConcurrentHashMap的屬性很多,其中不少屬性在HashMap中就已經介紹過,而對于ConcurrentHashMap而言,添加了Unsafe實例,主要用于反射獲取對象相應的字段。
3.4 類的構造函數
1. ConcurrentHashMap()型構造函數
public ConcurrentHashMap() { }說明:該構造函數用于創建一個帶有默認初始容量 (16)、加載因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。
2. ConcurrentHashMap(int)型構造函數
public ConcurrentHashMap(int initialCapacity) {if (initialCapacity < 0) // 初始容量小于0,拋出異常throw new IllegalArgumentException();int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?MAXIMUM_CAPACITY :tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); // 找到最接近該容量的2的冪次方數// 初始化this.sizeCtl = cap; }說明:該構造函數用于創建一個帶有指定初始容量、默認加載因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。
3. ConcurrentHashMap(Map<? extends K, ? extends V>)型構造函數
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {this.sizeCtl = DEFAULT_CAPACITY;// 將集合m的元素全部放入 putAll(m); }說明:該構造函數用于構造一個與給定映射具有相同映射關系的新映射。
4. ConcurrentHashMap(int, float)型構造函數
public ConcurrentHashMap(int initialCapacity, float loadFactor) {this(initialCapacity, loadFactor, 1); }說明:該構造函數用于創建一個帶有指定初始容量、加載因子和默認 concurrencyLevel (1) 的新的空映射。
5. ConcurrentHashMap(int, float, int)型構造函數
public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) // 合法性判斷throw new IllegalArgumentException();if (initialCapacity < concurrencyLevel) // Use at least as many binsinitialCapacity = concurrencyLevel; // as estimated threadslong size = (long)(1.0 + (long)initialCapacity / loadFactor);int cap = (size >= (long)MAXIMUM_CAPACITY) ?MAXIMUM_CAPACITY : tableSizeFor((int)size);this.sizeCtl = cap; }說明:該構造函數用于創建一個帶有指定初始容量、加載因子和并發級別的新的空映射。
對于構造函數而言,會根據輸入的initialCapacity的大小來確定一個最小的且大于等于initialCapacity大小的2的n次冪,如initialCapacity為15,則sizeCtl為16,若initialCapacity為16,則sizeCtl為16。若initialCapacity大小超過了允許的最大值,則sizeCtl為最大值。值得注意的是,構造函數中的concurrencyLevel參數已經在JDK1.8中的意義發生了很大的變化,其并不代表所允許的并發數,其只是用來確定sizeCtl大小,在JDK1.8中的并發控制都是針對具體的桶而言,即有多少個桶就可以允許多少個并發數。
3.5 核心函數分析
1. putVal函數
final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException(); // 鍵或值為空,拋出異常// 鍵的hash值經過計算獲得hash值int hash = spread(key.hashCode());int binCount = 0;for (Node<K,V>[] tab = table;;) { // 無限循環Node<K,V> f; int n, i, fh;if (tab == null || (n = tab.length) == 0) // 表為空或者表的長度為0// 初始化表tab = initTable();else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 表不為空并且表的長度大于0,并且該桶不為空if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null))) // 比較并且交換值,如tab的第i項為空則用新生成的node替換break; // no lock when adding to empty bin }else if ((fh = f.hash) == MOVED) // 該結點的hash值為MOVED// 進行結點的轉移(在擴容的過程中)tab = helpTransfer(tab, f);else {V oldVal = null;synchronized (f) { // 加鎖同步if (tabAt(tab, i) == f) { // 找到table表下標為i的節點if (fh >= 0) { // 該table表中該結點的hash值大于0// binCount賦值為1binCount = 1;for (Node<K,V> e = f;; ++binCount) { // 無限循環 K ek;if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) { // 結點的hash值相等并且key也相等// 保存該結點的val值oldVal = e.val;if (!onlyIfAbsent) // 進行判斷// 將指定的value保存至結點,即進行了結點值的更新e.val = value;break;}// 保存當前結點Node<K,V> pred = e;if ((e = e.next) == null) { // 當前結點的下一個結點為空,即為最后一個結點// 新生一個結點并且賦值給next域pred.next = new Node<K,V>(hash, key,value, null);// 退出循環break;}}}else if (f instanceof TreeBin) { // 結點為紅黑樹結點類型Node<K,V> p;// binCount賦值為2binCount = 2;if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) { // 將hash、key、value放入紅黑樹// 保存結點的valoldVal = p.val;if (!onlyIfAbsent) // 判斷// 賦值結點value值p.val = value;}}}}if (binCount != 0) { // binCount不為0if (binCount >= TREEIFY_THRESHOLD) // 如果binCount大于等于轉化為紅黑樹的閾值// 進行轉化 treeifyBin(tab, i);if (oldVal != null) // 舊值不為空// 返回舊值return oldVal;break;}}}// 增加binCount的數量addCount(1L, binCount);return null;}說明:put函數底層調用了putVal進行數據的插入,對于putVal函數的流程大體如下。
① 判斷存儲的key、value是否為空,若為空,則拋出異常,否則,進入步驟②
② 計算key的hash值,隨后進入無限循環,該無限循環可以確保成功插入數據,若table表為空或者長度為0,則初始化table表,否則,進入步驟③
③ 根據key的hash值取出table表中的結點元素,若取出的結點為空(該桶為空),則使用CAS將key、value、hash值生成的結點放入桶中。否則,進入步驟④
④ 若該結點的的hash值為MOVED,則對該桶中的結點進行轉移,否則,進入步驟⑤
⑤ 對桶中的第一個結點(即table表中的結點)進行加鎖,對該桶進行遍歷,桶中的結點的hash值與key值與給定的hash值和key值相等,則根據標識選擇是否進行更新操作(用給定的value值替換該結點的value值),若遍歷完桶仍沒有找到hash值與key值和指定的hash值與key值相等的結點,則直接新生一個結點并賦值為之前最后一個結點的下一個結點。進入步驟⑥
⑥ 若binCount值達到紅黑樹轉化的閾值,則將桶中的結構轉化為紅黑樹存儲,最后,增加binCount的值。
在putVal函數中會涉及到如下幾個函數:initTable、tabAt、casTabAt、helpTransfer、putTreeVal、treeifyBin、addCount函數。下面對其中涉及到的函數進行分析。
其中 initTable函數源碼如下
private final Node<K,V>[] initTable() {Node<K,V>[] tab; int sc;while ((tab = table) == null || tab.length == 0) { // 無限循環if ((sc = sizeCtl) < 0) // sizeCtl小于0,則進行線程讓步等待Thread.yield(); // lost initialization race; just spinelse if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { // 比較sizeCtl的值與sc是否相等,相等則用-1替換try {if ((tab = table) == null || tab.length == 0) { // table表為空或者大小為0// sc的值是否大于0,若是,則n為sc,否則,n為默認初始容量int n = (sc > 0) ? sc : DEFAULT_CAPACITY;@SuppressWarnings("unchecked")// 新生結點數組Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];// 賦值給tabletable = tab = nt;// sc為n * 3/4sc = n - (n >>> 2);}} finally {// 設置sizeCtl的值sizeCtl = sc;}break;}}// 返回table表return tab;}說明:對于table的大小,會根據sizeCtl的值進行設置,如果沒有設置szieCtl的值,那么默認生成的table大小為16,否則,會根據sizeCtl的大小設置table大小。
tabAt函數源碼如下
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); }說明:此函數返回table數組中下標為i的結點,可以看到是通過Unsafe對象通過反射獲取的,getObjectVolatile的第二項參數為下標為i的偏移地址。
casTabAt函數源碼如下
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,Node<K,V> c, Node<K,V> v) {return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v); }說明:此函數用于比較table數組下標為i的結點是否為c,若為c,則用v交換操作。否則,不進行交換操作。
helpTransfer函數源碼如下
1 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) { 2 Node<K,V>[] nextTab; int sc; 3 if (tab != null && (f instanceof ForwardingNode) && 4 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { // table表不為空并且結點類型使ForwardingNode類型,并且結點的nextTable不為空 5 int rs = resizeStamp(tab.length); 6 while (nextTab == nextTable && table == tab && 7 (sc = sizeCtl) < 0) { // 條件判斷 8 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || 9 sc == rs + MAX_RESIZERS || transferIndex <= 0) // 10 break; 11 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { // 比較并交換 12 // 將table的結點轉移到nextTab中 13 transfer(tab, nextTab); 14 break; 15 } 16 } 17 return nextTab; 18 } 19 return table; 20 }說明:此函數用于在擴容時將table表中的結點轉移到nextTable中。
putTreeVal函數源碼如下
1 final TreeNode<K,V> putTreeVal(int h, K k, V v) { 2 Class<?> kc = null; 3 boolean searched = false; 4 for (TreeNode<K,V> p = root;;) { 5 int dir, ph; K pk; 6 if (p == null) { 7 first = root = new TreeNode<K,V>(h, k, v, null, null); 8 break; 9 } 10 else if ((ph = p.hash) > h) 11 dir = -1; 12 else if (ph < h) 13 dir = 1; 14 else if ((pk = p.key) == k || (pk != null && k.equals(pk))) 15 return p; 16 else if ((kc == null && 17 (kc = comparableClassFor(k)) == null) || 18 (dir = compareComparables(kc, k, pk)) == 0) { 19 if (!searched) { 20 TreeNode<K,V> q, ch; 21 searched = true; 22 if (((ch = p.left) != null && 23 (q = ch.findTreeNode(h, k, kc)) != null) || 24 ((ch = p.right) != null && 25 (q = ch.findTreeNode(h, k, kc)) != null)) 26 return q; 27 } 28 dir = tieBreakOrder(k, pk); 29 } 30 31 TreeNode<K,V> xp = p; 32 if ((p = (dir <= 0) ? p.left : p.right) == null) { 33 TreeNode<K,V> x, f = first; 34 first = x = new TreeNode<K,V>(h, k, v, f, xp); 35 if (f != null) 36 f.prev = x; 37 if (dir <= 0) 38 xp.left = x; 39 else 40 xp.right = x; 41 if (!xp.red) 42 x.red = true; 43 else { 44 lockRoot(); 45 try { 46 root = balanceInsertion(root, x); 47 } finally { 48 unlockRoot(); 49 } 50 } 51 break; 52 } 53 } 54 assert checkInvariants(root); 55 return null; 56 }說明:此函數用于將指定的hash、key、value值添加到紅黑樹中,若已經添加了,則返回null,否則返回該結點。
treeifyBin函數源碼如下
1 private final void treeifyBin(Node<K,V>[] tab, int index) { 2 Node<K,V> b; int n, sc; 3 if (tab != null) { // 表不為空 4 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) // table表的長度小于最小的長度 5 // 進行擴容,調整某個桶中結點數量過多的問題(由于某個桶中結點數量超出了閾值,則觸發treeifyBin) 6 tryPresize(n << 1); 7 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { // 桶中存在結點并且結點的hash值大于等于0 8 synchronized (b) { // 對桶中第一個結點進行加鎖 9 if (tabAt(tab, index) == b) { // 第一個結點沒有變化 10 TreeNode<K,V> hd = null, tl = null; 11 for (Node<K,V> e = b; e != null; e = e.next) { // 遍歷桶中所有結點 12 // 新生一個TreeNode結點 13 TreeNode<K,V> p = 14 new TreeNode<K,V>(e.hash, e.key, e.val, 15 null, null); 16 if ((p.prev = tl) == null) // 該結點前驅為空 17 // 設置p為頭結點 18 hd = p; 19 else 20 // 尾節點的next域賦值為p 21 tl.next = p; 22 // 尾節點賦值為p 23 tl = p; 24 } 25 // 設置table表中下標為index的值為hd 26 setTabAt(tab, index, new TreeBin<K,V>(hd)); 27 } 28 } 29 } 30 } 31 }說明:此函數用于將桶中的數據結構轉化為紅黑樹,其中,值得注意的是,當table的長度未達到閾值時,會進行一次擴容操作,該操作會使得觸發treeifyBin操作的某個桶中的所有元素進行一次重新分配,這樣可以避免某個桶中的結點數量太大。
addCount函數源碼如下
1 private final void addCount(long x, int check) { 2 CounterCell[] as; long b, s; 3 if ((as = counterCells) != null || 4 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { // counterCells不為空或者比較交換失敗 5 CounterCell a; long v; int m; 6 // 無競爭標識 7 boolean uncontended = true; 8 if (as == null || (m = as.length - 1) < 0 || 9 (a = as[ThreadLocalRandom.getProbe() & m]) == null || 10 !(uncontended = 11 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { // 12 fullAddCount(x, uncontended); 13 return; 14 } 15 if (check <= 1) 16 return; 17 s = sumCount(); 18 } 19 if (check >= 0) { 20 Node<K,V>[] tab, nt; int n, sc; 21 while (s >= (long)(sc = sizeCtl) && (tab = table) != null && 22 (n = tab.length) < MAXIMUM_CAPACITY) { 23 int rs = resizeStamp(n); 24 if (sc < 0) { 25 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || 26 sc == rs + MAX_RESIZERS || (nt = nextTable) == null || 27 transferIndex <= 0) 28 break; 29 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) 30 transfer(tab, nt); 31 } 32 else if (U.compareAndSwapInt(this, SIZECTL, sc, 33 (rs << RESIZE_STAMP_SHIFT) + 2)) 34 transfer(tab, null); 35 s = sumCount(); 36 } 37 } 38 }?說明:此函數主要完成binCount的值加1的操作。
2. get函數
1 public V get(Object key) { 2 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek; 3 // 計算key的hash值 4 int h = spread(key.hashCode()); 5 if ((tab = table) != null && (n = tab.length) > 0 && 6 (e = tabAt(tab, (n - 1) & h)) != null) { // 表不為空并且表的長度大于0并且key所在的桶不為空 7 if ((eh = e.hash) == h) { // 表中的元素的hash值與key的hash值相等 8 if ((ek = e.key) == key || (ek != null && key.equals(ek))) // 鍵相等 9 // 返回值 10 return e.val; 11 } 12 else if (eh < 0) // 結點hash值小于0 13 // 在桶(鏈表/紅黑樹)中查找 14 return (p = e.find(h, key)) != null ? p.val : null; 15 while ((e = e.next) != null) { // 對于結點hash值大于0的情況 16 if (e.hash == h && 17 ((ek = e.key) == key || (ek != null && key.equals(ek)))) 18 return e.val; 19 } 20 } 21 return null; 22 }說明:get函數根據key的hash值來計算在哪個桶中,再遍歷桶,查找元素,若找到則返回該結點,否則,返回null。
3. replaceNode函數
1 final V replaceNode(Object key, V value, Object cv) { 2 // 計算key的hash值 3 int hash = spread(key.hashCode()); 4 for (Node<K,V>[] tab = table;;) { // 無限循環 5 Node<K,V> f; int n, i, fh; 6 if (tab == null || (n = tab.length) == 0 || 7 (f = tabAt(tab, i = (n - 1) & hash)) == null) // table表為空或者表長度為0或者key所對應的桶為空 8 // 跳出循環 9 break; 10 else if ((fh = f.hash) == MOVED) // 桶中第一個結點的hash值為MOVED 11 // 轉移 12 tab = helpTransfer(tab, f); 13 else { 14 V oldVal = null; 15 boolean validated = false; 16 synchronized (f) { // 加鎖同步 17 if (tabAt(tab, i) == f) { // 桶中的第一個結點沒有發生變化 18 if (fh >= 0) { // 結點hash值大于0 19 validated = true; 20 for (Node<K,V> e = f, pred = null;;) { // 無限循環 21 K ek; 22 if (e.hash == hash && 23 ((ek = e.key) == key || 24 (ek != null && key.equals(ek)))) { // 結點的hash值與指定的hash值相等,并且key也相等 25 V ev = e.val; 26 if (cv == null || cv == ev || 27 (ev != null && cv.equals(ev))) { // cv為空或者與結點value相等或者不為空并且相等 28 // 保存該結點的val值 29 oldVal = ev; 30 if (value != null) // value為null 31 // 設置結點value值 32 e.val = value; 33 else if (pred != null) // 前驅不為空 34 // 前驅的后繼為e的后繼,即刪除了e結點 35 pred.next = e.next; 36 else 37 // 設置table表中下標為index的值為e.next 38 setTabAt(tab, i, e.next); 39 } 40 break; 41 } 42 pred = e; 43 if ((e = e.next) == null) 44 break; 45 } 46 } 47 else if (f instanceof TreeBin) { // 為紅黑樹結點類型 48 validated = true; 49 // 類型轉化 50 TreeBin<K,V> t = (TreeBin<K,V>)f; 51 TreeNode<K,V> r, p; 52 if ((r = t.root) != null && 53 (p = r.findTreeNode(hash, key, null)) != null) { // 根節點不為空并且存在與指定hash和key相等的結點 54 // 保存p結點的value 55 V pv = p.val; 56 if (cv == null || cv == pv || 57 (pv != null && cv.equals(pv))) { // cv為空或者與結點value相等或者不為空并且相等 58 oldVal = pv; 59 if (value != null) 60 p.val = value; 61 else if (t.removeTreeNode(p)) // 移除p結點 62 setTabAt(tab, i, untreeify(t.first)); 63 } 64 } 65 } 66 } 67 } 68 if (validated) { 69 if (oldVal != null) { 70 if (value == null) 71 // baseCount值減一 72 addCount(-1L, -1); 73 return oldVal; 74 } 75 break; 76 } 77 } 78 } 79 return null; 80 }說明:此函數對remove函數提供支持,remove函數底層是調用的replaceNode函數實現結點的刪除。
四、示例
下面一個示例展示了多線程下HashMap、Hashtable、ConcurrentHashMap的性能差異。源碼如下
1 package com.hust.grid.leesf.collections; 2 3 import java.util.HashMap; 4 import java.util.Map; 5 import java.util.concurrent.ConcurrentHashMap; 6 import java.util.concurrent.CountDownLatch; 7 import java.util.Collections; 8 import java.util.Hashtable; 9 10 class PutThread extends Thread { 11 private Map<String, Integer> map; 12 private CountDownLatch countDownLatch; 13 private String key = this.getId() + ""; 14 15 PutThread(Map<String, Integer> map, CountDownLatch countDownLatch) { 16 this.map = map; 17 this.countDownLatch = countDownLatch; 18 } 19 20 public void run() { 21 for (int i = 1; i <= ConcurrentHashMapDemo.NUMBER; i++) { 22 map.put(key, i); 23 } 24 countDownLatch.countDown(); 25 } 26 } 27 28 class GetThread extends Thread { 29 private Map<String, Integer> map; 30 private CountDownLatch countDownLatch; 31 private String key = this.getId() + ""; 32 33 GetThread(Map<String, Integer> map, CountDownLatch countDownLatch) { 34 this.map = map; 35 this.countDownLatch = countDownLatch; 36 } 37 38 public void run() { 39 for (int i = 1; i <= ConcurrentHashMapDemo.NUMBER; i++) { 40 map.get(key); 41 } 42 countDownLatch.countDown(); 43 } 44 } 45 46 public class ConcurrentHashMapDemo { 47 static final int THREADNUMBER = 50; 48 static final int NUMBER = 5000; 49 50 public static void main(String[] args) throws Exception { 51 Map<String, Integer> hashmapSync = Collections 52 .synchronizedMap(new HashMap<String, Integer>()); 53 Map<String, Integer> concurrentHashMap = new ConcurrentHashMap<String, Integer>(); 54 Map<String, Integer> hashtable = new Hashtable<String, Integer>(); 55 long totalA = 0L; 56 long totalB = 0L; 57 long totalC = 0L; 58 for (int i = 0; i <= 100; i++) { 59 totalA += put(hashmapSync); 60 totalB += put(concurrentHashMap); 61 totalC += put(hashtable); 62 } 63 System.out.println("put time HashMapSync = " + totalA + "ms."); 64 System.out.println("put time ConcurrentHashMap = " + totalB + "ms."); 65 System.out.println("put time Hashtable = " + totalC + "ms."); 66 totalA = 0; 67 totalB = 0; 68 totalC = 0; 69 for (int i = 0; i <= 10; i++) { 70 totalA += get(hashmapSync); 71 totalB += get(concurrentHashMap); 72 totalC += get(hashtable); 73 } 74 System.out.println("get time HashMapSync=" + totalA + "ms."); 75 System.out.println("get time ConcurrentHashMap=" + totalB + "ms."); 76 System.out.println("get time Hashtable=" + totalC + "ms."); 77 } 78 79 public static long put(Map<String, Integer> map) throws Exception { 80 long start = System.currentTimeMillis(); 81 CountDownLatch countDownLatch = new CountDownLatch(THREADNUMBER); 82 for (int i = 0; i < THREADNUMBER; i++) { 83 new PutThread(map, countDownLatch).start(); 84 } 85 countDownLatch.await(); 86 return System.currentTimeMillis() - start; 87 } 88 89 public static long get(Map<String, Integer> map) throws Exception { 90 long start = System.currentTimeMillis(); 91 CountDownLatch countDownLatch = new CountDownLatch(THREADNUMBER); 92 for (int i = 0; i < THREADNUMBER; i++) { 93 new GetThread(map, countDownLatch).start(); 94 } 95 countDownLatch.await(); 96 return System.currentTimeMillis() - start; 97 } 98 }運行結果(某一次):
put time HashMapSync = 5489ms. put time ConcurrentHashMap = 1433ms. put time Hashtable = 5331ms. get time HashMapSync=491ms. get time ConcurrentHashMap=101ms. get time Hashtable=462ms.說明:程序中對HashMap進行了封裝,將其封裝為線程安全的集合,而ConcurrentHashMap是線程安全的,Hashtable也是線程安全的,但是,其并發效率并不搞,可以看到,ConcurrentHashMap的性能相比HashMap的線程安全同步集合和Hashtable而言,性能都要高出不少。原因是經過Collections封裝的線程安全的HashMap和Hashtable都是對整個結構加鎖,而ConcurrentHashMap是對每一個桶單獨進行鎖操作,不同的桶之間的操作不會相互影響,可以并發執行。因此,其速度會快很多。
五、總結
JDK1.8的ConcurrentHashMap相比之前版本的ConcurrentHashMap有很了大的改進與不同,只有通過分析源碼才能領略代碼的魅力,當然,此次的分析僅僅涉及到了主要的函數,對于其他的函數,讀者可以自行分析,謝謝各位園友的觀看~
下面一篇文章寫得非常好,推薦一讀:http://www.cnblogs.com/huaizuo/archive/2016/04/20/5413069.html
轉載:https://www.cnblogs.com/leesf456/p/5453341.html
轉載于:https://www.cnblogs.com/cxhfuujust/p/10815603.html
總結
以上是生活随笔為你收集整理的【JUC】JDK1.8源码分析之ConcurrentHashMap的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 职业素质学习心得
- 下一篇: 二叉树两个结点的最低公共父结点 【微软面