3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

今日arXiv精选 | TNNLS/ICCV/TIP/ACM MM/CIKM/WWW/ICME

發布時間:2024/10/8 编程问答 41 豆豆
生活随笔 收集整理的這篇文章主要介紹了 今日arXiv精选 | TNNLS/ICCV/TIP/ACM MM/CIKM/WWW/ICME 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?關于?#今日arXiv精選?

這是「AI 學術前沿」旗下的一檔欄目,編輯將每日從arXiv中精選高質量論文,推送給讀者。

Medical-VLBERT: Medical Visual Language BERT for COVID-19 CT Report Generation With Alternate Learning

Comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems

Link:?http://arxiv.org/abs/2108.05067

Abstract

Medical imaging technologies, including computed tomography (CT) or chestX-Ray (CXR), are largely employed to facilitate the diagnosis of the COVID-19.Since manual report writing is usually too time-consuming, a more intelligentauxiliary medical system that could generate medical reports automatically andimmediately is urgently needed. In this article, we propose to use the medicalvisual language BERT (Medical-VLBERT) model to identify the abnormality on theCOVID-19 scans and generate the medical report automatically based on thedetected lesion regions. To produce more accurate medical reports and minimizethe visual-and-linguistic differences, this model adopts an alternate learningstrategy with two procedures that are knowledge pretraining and transferring.To be more precise, the knowledge pretraining procedure is to memorize theknowledge from medical texts, while the transferring procedure is to utilizethe acquired knowledge for professional medical sentences generations throughobservations of medical images. In practice, for automatic medical reportgeneration on the COVID-19 cases, we constructed a dataset of 368 medicalfindings in Chinese and 1104 chest CT scans from The First Affiliated Hospitalof Jinan University, Guangzhou, China, and The Fifth Affiliated Hospital of SunYat-sen University, Zhuhai, China. Besides, to alleviate the insufficiency ofthe COVID-19 training samples, our model was first trained on the large-scaleChinese CX-CHR dataset and then transferred to the COVID-19 CT dataset forfurther fine-tuning. The experimental results showed that Medical-VLBERTachieved state-of-the-art performances on terminology prediction and reportgeneration with the Chinese COVID-19 CT dataset and the CX-CHR dataset. TheChinese COVID-19 CT dataset is available at https://covid19ct.github.io/.

Person Re-identification via Attention Pyramid

Comment: Accepted by IEEE Transcations on Image Processing.?

Code:?https://github.com/CHENGY12/APNet

Link:?http://arxiv.org/abs/2108.05340

Abstract

In this paper, we propose an attention pyramid method for personre-identification. Unlike conventional attention-based methods which only learna global attention map, our attention pyramid exploits the attention regions ina multi-scale manner because human attention varies with different scales. Ourattention pyramid imitates the process of human visual perception which tendsto notice the foreground person over the cluttered background, and furtherfocus on the specific color of the shirt with close observation. Specifically,we describe our attention pyramid by a "split-attend-merge-stack" principle. Wefirst split the features into multiple local parts and learn the correspondingattentions. Then, we merge local attentions and stack these merged attentionswith the residual connection as an attention pyramid. The proposed attentionpyramid is a lightweight plug-and-play module that can be applied tooff-the-shelf models. We implement our attention pyramid method in twodifferent attention mechanisms including channel-wise attention and spatialattention. We evaluate our method on four largescale person re-identificationbenchmarks including Market-1501, DukeMTMC, CUHK03, and MSMT17. Experimentalresults demonstrate the superiority of our method, which outperforms thestate-of-the-art methods by a large margin with limited computational cost.

Towards Interpretable Deep Networks for Monocular Depth Estimation

Comment: Accepted by ICCV2021

Link:?http://arxiv.org/abs/2108.05312

Abstract

Deep networks for Monocular Depth Estimation (MDE) have achieved promisingperformance recently and it is of great importance to further understand theinterpretability of these networks. Existing methods attempt to provide posthocexplanations by investigating visual cues, which may not explore the internalrepresentations learned by deep networks. In this paper, we find that somehidden units of the network are selective to certain ranges of depth, and thussuch behavior can be served as a way to interpret the internal representations.Based on our observations, we quantify the interpretability of a deep MDEnetwork by the depth selectivity of its hidden units. Moreover, we then proposea method to train interpretable MDE deep networks without changing theiroriginal architectures, by assigning a depth range for each unit to select.Experimental results demonstrate that our method is able to enhance theinterpretability of deep MDE networks by largely improving the depthselectivity of their units, while not harming or even improving the depthestimation accuracy. We further provide a comprehensive analysis to show thereliability of selective units, the applicability of our method on differentlayers, models, and datasets, and a demonstration on analysis of model error.Source code and models are available athttps://github.com/youzunzhi/InterpretableMDE .

Video Transformer for Deepfake Detection with Incremental Learning

Comment: Accepted at ACM International Conference on Multimedia, October 20 to ?24, 2021, Virtual Event, China

Link:?http://arxiv.org/abs/2108.05307

Abstract

Face forgery by deepfake is widely spread over the internet and this raisessevere societal concerns. In this paper, we propose a novel video transformerwith incremental learning for detecting deepfake videos. To better align theinput face images, we use a 3D face reconstruction method to generate UVtexture from a single input face image. The aligned face image can also providepose, eyes blink and mouth movement information that cannot be perceived in theUV texture image, so we use both face images and their UV texture maps toextract the image features. We present an incremental learning strategy tofine-tune the proposed model on a smaller amount of data and achieve betterdeepfake detection performance. The comprehensive experiments on various publicdeepfake datasets demonstrate that the proposed video transformer model withincremental learning achieves state-of-the-art performance in the deepfakevideo detection task with enhanced feature learning from the sequenced data.

ConvNets vs. Transformers: Whose Visual Representations are More Transferable?

Comment: Accepted by ICCV 2021 Workshop on Multi-Task Learning in Computer ?Vision (DeepMTL)

Link:?http://arxiv.org/abs/2108.05305

Abstract

Vision transformers have attracted much attention from computer visionresearchers as they are not restricted to the spatial inductive bias ofConvNets. However, although Transformer-based backbones have achieved muchprogress on ImageNet classification, it is still unclear whether the learnedrepresentations are as transferable as or even more transferable than ConvNets'features. To address this point, we systematically investigate the transferlearning ability of ConvNets and vision transformers in 15 single-task andmulti-task performance evaluations. Given the strong correlation between theperformance of pre-trained models and transfer learning, we include 2 residualConvNets (i.e., R-101x3 and R-152x4) and 3 Transformer-based visual backbones(i.e., ViT-B, ViT-L and Swin-B), which have close error rates on ImageNet, thatindicate similar transfer learning performance on downstream datasets. ?We observe consistent advantages of Transformer-based backbones on 13downstream tasks (out of 15), including but not limited to fine-grainedclassification, scene recognition (classification, segmentation and depthestimation), open-domain classification, face recognition, etc. Morespecifically, we find that two ViT models heavily rely on whole networkfine-tuning to achieve performance gains while Swin Transformer does not havesuch a requirement. Moreover, vision transformers behave more robustly inmulti-task learning, i.e., bringing more improvements when managing mutuallybeneficial tasks and reducing performance losses when tackling irrelevanttasks. We hope our discoveries can facilitate the exploration and exploitationof vision transformers in the future.

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution

Comment: Accepted by ICCV2021.?

Code: https://github.com/JingyunLiang/MANet

Link:?http://arxiv.org/abs/2108.05302

Abstract

Existing blind image super-resolution (SR) methods mostly assume blur kernelsare spatially invariant across the whole image. However, such an assumption israrely applicable for real images whose blur kernels are usually spatiallyvariant due to factors such as object motion and out-of-focus. Hence, existingblind SR methods would inevitably give rise to poor performance in realapplications. To address this issue, this paper proposes a mutual affinenetwork (MANet) for spatially variant kernel estimation. Specifically, MANethas two distinctive features. First, it has a moderate receptive field so as tokeep the locality of degradation. Second, it involves a new mutual affineconvolution (MAConv) layer that enhances feature expressiveness withoutincreasing receptive field, model size and computation burden. This is madepossible through exploiting channel interdependence, which applies each channelsplit with an affine transformation module whose input are the rest channelsplits. Extensive experiments on synthetic and real images show that theproposed MANet not only performs favorably for both spatially variant andinvariant kernel estimation, but also leads to state-of-the-art blind SRperformance when combined with non-blind SR methods.

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling

Comment: Accepted by ICCV2021.?

Code: https://github.com/JingyunLiang/HCFlow

Link:?http://arxiv.org/abs/2108.05301

Abstract

Normalizing flows have recently demonstrated promising results for low-levelvision tasks. For image super-resolution (SR), it learns to predict diversephoto-realistic high-resolution (HR) images from the low-resolution (LR) imagerather than learning a deterministic mapping. For image rescaling, it achieveshigh accuracy by jointly modelling the downscaling and upscaling processes.While existing approaches employ specialized techniques for these two tasks, weset out to unify them in a single formulation. In this paper, we propose thehierarchical conditional flow (HCFlow) as a unified framework for image SR andimage rescaling. More specifically, HCFlow learns a bijective mapping betweenHR and LR image pairs by modelling the distribution of the LR image and therest high-frequency component simultaneously. In particular, the high-frequencycomponent is conditional on the LR image in a hierarchical manner. To furtherenhance the performance, other losses such as perceptual loss and GAN loss arecombined with the commonly used negative log-likelihood loss in training.Extensive experiments on general image SR, face image SR and image rescalinghave demonstrated that the proposed HCFlow achieves state-of-the-artperformance in terms of both quantitative metrics and visual quality.

Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

Comment: Camera-Ready Version for ICCV 2021

Link:?http://arxiv.org/abs/2108.05249

Abstract

This work addresses the challenging task of LiDAR-based 3D object detectionin foggy weather. Collecting and annotating data in such a scenario is verytime, labor and cost intensive. In this paper, we tackle this problem bysimulating physically accurate fog into clear-weather scenes, so that theabundant existing real datasets captured in clear weather can be repurposed forour task. Our contributions are twofold: 1) We develop a physically valid fogsimulation method that is applicable to any LiDAR dataset. This unleashes theacquisition of large-scale foggy training data at no extra cost. Thesepartially synthetic data can be used to improve the robustness of severalperception methods, such as 3D object detection and tracking or simultaneouslocalization and mapping, on real foggy data. 2) Through extensive experimentswith several state-of-the-art detection approaches, we show that our fogsimulation can be leveraged to significantly improve the performance for 3Dobject detection in the presence of fog. Thus, we are the first to providestrong 3D object detection baselines on the Seeing Through Fog dataset. Ourcode is available at www.trace.ethz.ch/lidar_fog_simulation.

ProAI: An Efficient Embedded AI Hardware for Automotive Applications - a Benchmark Study

Comment: Accepted by IEEE International Conference on Computer Vision (ICCV) ?2021

Link:?http://arxiv.org/abs/2108.05170

Abstract

Development in the field of Single Board Computers (SBC) have been increasingfor several years. They provide a good balance between computing performanceand power consumption which is usually required for mobile platforms, likeapplication in vehicles for Advanced Driver Assistance Systems (ADAS) andAutonomous Driving (AD). However, there is an ever-increasing need of morepowerful and efficient SBCs which can run power intensive Deep Neural Networks(DNNs) in real-time and can also satisfy necessary functional safetyrequirements such as Automotive Safety Integrity Level (ASIL). ProAI is beingdeveloped by ZF mainly to run powerful and efficient applications such asmultitask DNNs and on top of that it also has the required safety certificationfor AD. In this work, we compare and discuss state of the art SBC on the basisof power intensive multitask DNN architecture called Multitask-CenterNet withrespect to performance measures such as, FPS and power efficiency. As anautomotive supercomputer, ProAI delivers an excellent combination ofperformance and efficiency, managing nearly twice the number of FPS per wattthan a modern workstation laptop and almost four times compared to the JetsonNano. Furthermore, it was also shown that there is still power in reserve forfurther and more complex tasks on the ProAI, based on the CPU and GPUutilization during the benchmark.

Efficient Surfel Fusion Using Normalised Information Distance

Comment: 4 pages, 4 figures, presented at CVPR 2019 Workshop on 3D Scene ?Understanding for Vision, Graphics, and Robotics

Link:?http://arxiv.org/abs/2108.05163

Abstract

We present a new technique that achieves a significant reduction in thequantity of measurements required for a fusion based dense 3D mapping system toconverge to an accurate, de-noised surface reconstruction. This is achievedthrough the use of a Normalised Information Distance metric, that computes thenovelty of the information contained in each incoming frame with respect to thereconstruction, and avoids fusing those frames that exceed a redundancythreshold. This provides a principled approach for opitmising the trade-offbetween surface reconstruction accuracy and the computational cost ofprocessing frames. The technique builds upon the ElasticFusion (EF) algorithmwhere we report results of the technique's scalability and the accuracy of theresultant maps by applying it to both the ICL-NUIM and TUM RGB-D datasets.These results demonstrate the capabilities of the approach in performingaccurate surface reconstructions whilst utilising a fraction of the frames whencompared to the original EF algorithm.

Zero-Shot Domain Adaptation with a Physics Prior

Comment: ICCV 2021 Oral presentation.?

Code: https://github.com/Attila94/CIConv

Link:?http://arxiv.org/abs/2108.05137

Abstract

We explore the zero-shot setting for day-night domain adaptation. Thetraditional domain adaptation setting is to train on one domain and adapt tothe target domain by exploiting unlabeled data samples from the test set. Asgathering relevant test data is expensive and sometimes even impossible, weremove any reliance on test data imagery and instead exploit a visual inductiveprior derived from physics-based reflection models for domain adaptation. Wecast a number of color invariant edge detectors as trainable layers in aconvolutional neural network and evaluate their robustness to illuminationchanges. We show that the color invariant layer reduces the day-nightdistribution shift in feature map activations throughout the network. Wedemonstrate improved performance for zero-shot day to night domain adaptationon both synthetic as well as natural datasets in various tasks, includingclassification, segmentation and place recognition.

M3D-VTON: A Monocular-to-3D Virtual Try-On Network

Comment: Accepted at ICCV 2021

Link:?http://arxiv.org/abs/2108.05126

Abstract

Virtual 3D try-on can provide an intuitive and realistic view for onlineshopping and has a huge potential commercial value. However, existing 3Dvirtual try-on methods mainly rely on annotated 3D human shapes and garmenttemplates, which hinders their applications in practical scenarios. 2D virtualtry-on approaches provide a faster alternative to manipulate clothed humans,but lack the rich and realistic 3D representation. In this paper, we propose anovel Monocular-to-3D Virtual Try-On Network (M3D-VTON) that builds on themerits of both 2D and 3D approaches. By integrating 2D information efficientlyand learning a mapping that lifts the 2D representation to 3D, we make thefirst attempt to reconstruct a 3D try-on mesh only taking the target clothingand a person image as inputs. The proposed M3D-VTON includes three modules: 1)The Monocular Prediction Module (MPM) that estimates an initial full-body depthmap and accomplishes 2D clothes-person alignment through a novel two-stagewarping procedure; 2) The Depth Refinement Module (DRM) that refines theinitial body depth to produce more detailed pleat and face characteristics; 3)The Texture Fusion Module (TFM) that fuses the warped clothing with thenon-target body part to refine the results. We also construct a high-qualitysynthesized Monocular-to-3D virtual try-on dataset, in which each person imageis associated with a front and a back depth map. Extensive experimentsdemonstrate that the proposed M3D-VTON can manipulate and reconstruct the 3Dhuman body wearing the given clothing with compelling details and is moreefficient than other 3D approaches.

Representation Learning for Remote Sensing: An Unsupervised Sensor Fusion Approach

Comment: Work completed in 2019 and submitted to ICLR in ?2020.

Code: ?https://github.com/descarteslabs/contrastive_sensor_fusion.?

Data: ?https://storage.cloud.google.com/public-published-datasets/osm_example_dataset.zip?folder=true&organizationId=272688069953

Link:?http://arxiv.org/abs/2108.05094

Abstract

In the application of machine learning to remote sensing, labeled data isoften scarce or expensive, which impedes the training of powerful models likedeep convolutional neural networks. Although unlabeled data is abundant, recentself-supervised learning approaches are ill-suited to the remote sensingdomain. In addition, most remote sensing applications currently use only asmall subset of the multi-sensor, multi-channel information available,motivating the need for fused multi-sensor representations. We propose a newself-supervised training objective, Contrastive Sensor Fusion, which exploitscoterminous data from multiple sources to learn useful representations of everypossible combination of those sources. This method uses information commonacross multiple sensors and bands by training a single model to produce arepresentation that remains similar when any subset of its input channels isused. Using a dataset of 47 million unlabeled coterminous image triplets, wetrain an encoder to produce semantically meaningful representations from anypossible combination of channels from the input sensors. These representationsoutperform fully supervised ImageNet weights on a remote sensing classificationtask and improve as more sensors are fused. Our code is available athttps://storage.cloud.google.com/public-published-datasets/csf_code.zip.

Multi-Source Fusion and Automatic Predictor Selection for Zero-Shot Video Object Segmentation

Comment: This work was accepted as ACM MM 2021 oral

Link:?http://arxiv.org/abs/2108.05076

Abstract

Location and appearance are the key cues for video object segmentation. Manysources such as RGB, depth, optical flow and static saliency can provide usefulinformation about the objects. However, existing approaches only utilize theRGB or RGB and optical flow. In this paper, we propose a novel multi-sourcefusion network for zero-shot video object segmentation. With the help ofinteroceptive spatial attention module (ISAM), spatial importance of eachsource is highlighted. Furthermore, we design a feature purification module(FPM) to filter the inter-source incompatible features. By the ISAM and FPM,the multi-source features are effectively fused. In addition, we put forward anautomatic predictor selection network (APS) to select the better prediction ofeither the static saliency predictor or the moving object predictor in order toprevent over-reliance on the failed results caused by low-quality optical flowmaps. Extensive experiments on three challenging public benchmarks (i.e.DAVIS$_{16}$, Youtube-Objects and FBMS) show that the proposed model achievescompelling performance against the state-of-the-arts. The source code will bepublicly available at\textcolor{red}{\url{https://github.com/Xiaoqi-Zhao-DLUT/Multi-Source-APS-ZVOS}}.

MultiTask-CenterNet (MCN): Efficient and Diverse Multitask Learning using an Anchor Free Approach

Comment: Accepted by IEEE International Conference on Computer Vision (ICCV) ?2021

Link:?http://arxiv.org/abs/2108.05060

Abstract

Multitask learning is a common approach in machine learning, which allows totrain multiple objectives with a shared architecture. It has been shown that bytraining multiple tasks together inference time and compute resources can besaved, while the objectives performance remains on a similar or even higherlevel. However, in perception related multitask networks only closely relatedtasks can be found, such as object detection, instance and semanticsegmentation or depth estimation. Multitask networks with diverse tasks andtheir effects with respect to efficiency on one another are not well studied.In this paper we augment the CenterNet anchor-free approach for trainingmultiple diverse perception related tasks together, including the task ofobject detection and semantic segmentation as well as human pose estimation. Werefer to this DNN as Multitask-CenterNet (MCN). Additionally, we studydifferent MCN settings for efficiency. The MCN can perform several tasks atonce while maintaining, and in some cases even exceeding, the performancevalues of its corresponding single task networks. More importantly, the MCNarchitecture decreases inference time and reduces network size when compared toa composition of single task networks.

Rethinking Coarse-to-Fine Approach in Single Image Deblurring

Comment: Accepted by IEEE International Conference on Computer Vision (ICCV) ?2021

Link:?http://arxiv.org/abs/2108.05054

Abstract

Coarse-to-fine strategies have been extensively used for the architecturedesign of single image deblurring networks. Conventional methods typicallystack sub-networks with multi-scale input images and gradually improvesharpness of images from the bottom sub-network to the top sub-network,yielding inevitably high computational costs. Toward a fast and accuratedeblurring network design, we revisit the coarse-to-fine strategy and present amulti-input multi-output U-net (MIMO-UNet). The MIMO-UNet has three distinctfeatures. First, the single encoder of the MIMO-UNet takes multi-scale inputimages to ease the difficulty of training. Second, the single decoder of theMIMO-UNet outputs multiple deblurred images with different scales to mimicmulti-cascaded U-nets using a single U-shaped network. Last, asymmetric featurefusion is introduced to merge multi-scale features in an efficient manner.Extensive experiments on the GoPro and RealBlur datasets demonstrate that theproposed network outperforms the state-of-the-art methods in terms of bothaccuracy and computational complexity. Source code is available for researchpurposes at https://github.com/chosj95/MIMO-UNet.

Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization

Comment: Accepted by ICCV 2021 (Oral).?

Code: https://github.com/Pilhyeon

Link:?http://arxiv.org/abs/2108.05029

Abstract

We tackle the problem of localizing temporal intervals of actions with only asingle frame label for each action instance for training. Owing to labelsparsity, existing work fails to learn action completeness, resulting infragmentary action predictions. In this paper, we propose a novel framework,where dense pseudo-labels are generated to provide completeness guidance forthe model. Concretely, we first select pseudo background points to supplementpoint-level action labels. Then, by taking the points as seeds, we search forthe optimal sequence that is likely to contain complete action instances whileagreeing with the seeds. To learn completeness from the obtained sequence, weintroduce two novel losses that contrast action instances with background onesin terms of action score and feature similarity, respectively. Experimentalresults demonstrate that our completeness guidance indeed helps the model tolocate complete action instances, leading to large performance gains especiallyunder high IoU thresholds. Moreover, we demonstrate the superiority of ourmethod over existing state-of-the-art methods on four benchmarks: THUMOS'14,GTEA, BEOID, and ActivityNet. Notably, our method even performs comparably torecent fully-supervised methods, at the 6 times cheaper annotation cost. Ourcode is available at https://github.com/Pilhyeon.

Prototype Completion for Few-Shot Learning

Comment: Extended version of 'Prototype Completion with Primitive Knowledge ?for Few-Shot Learning' in CVPR2021

Link:?http://arxiv.org/abs/2108.05010

Abstract

Few-shot learning aims to recognize novel classes with few examples.Pre-training based methods effectively tackle the problem by pre-training afeature extractor and then fine-tuning it through the nearest centroid basedmeta-learning. However, results show that the fine-tuning step makes marginalimprovements. In this paper, 1) we figure out the reason, i.e., in thepre-trained feature space, the base classes already form compact clusters whilenovel classes spread as groups with large variances, which implies thatfine-tuning feature extractor is less meaningful; 2) instead of fine-tuningfeature extractor, we focus on estimating more representative prototypes.Consequently, we propose a novel prototype completion based meta-learningframework. This framework first introduces primitive knowledge (i.e.,class-level part or attribute annotations) and extracts representative featuresfor seen attributes as priors. Second, a part/attribute transfer network isdesigned to learn to infer the representative features for unseen attributes assupplementary priors. Finally, a prototype completion network is devised tolearn to complete prototypes with these priors. Moreover, to avoid theprototype completion error, we further develop a Gaussian based prototypefusion strategy that fuses the mean-based and completed prototypes byexploiting the unlabeled samples. Extensive experiments show that our method:(i) obtains more accurate prototypes; (ii) achieves superior performance onboth inductive and transductive FSL settings.

Large-Scale Modeling of Mobile User Click Behaviors Using Deep Learning

Comment: Accepted to RecSys'21

Link:?http://arxiv.org/abs/2108.05342

Abstract

Modeling tap or click sequences of users on a mobile device can improve ourunderstandings of interaction behavior and offers opportunities for UIoptimization by recommending next element the user might want to click on. Weanalyzed a large-scale dataset of over 20 million clicks from more than 4,000mobile users who opted in. We then designed a deep learning model that predictsthe next element that the user clicks given the user's click history, thestructural information of the UI screen, and the current context such as thetime of the day. We thoroughly investigated the deep model by comparing it witha set of baseline methods based on the dataset. The experiments show that ourmodel achieves 48% and 71% accuracy (top-1 and top-3) for predicting nextclicks based on a held-out dataset of test users, which significantlyoutperformed all the baseline methods with a large margin. We discussed a fewscenarios for integrating the model in mobile interaction and how users canpotentially benefit from the model.

Estimation of Fair Ranking Metrics with Incomplete Judgments

Comment: Published in Proceedings of the Web Conference 2021 (WWW '21)

Link:?http://arxiv.org/abs/2108.05152

Abstract

There is increasing attention to evaluating the fairness of search systemranking decisions. These metrics often consider the membership of items toparticular groups, often identified using protected attributes such as genderor ethnicity. To date, these metrics typically assume the availability andcompleteness of protected attribute labels of items. However, the protectedattributes of individuals are rarely present, limiting the application of fairranking metrics in large scale systems. In order to address this problem, wepropose a sampling strategy and estimation technique for four fair rankingmetrics. We formulate a robust and unbiased estimator which can operate evenwith very limited number of labeled items. We evaluate our approach using bothsimulated and real world data. Our experimental results demonstrate that ourmethod can estimate this family of fair ranking metrics and provides a robust,reliable alternative to exhaustive or random data annotation.

Cooperative Learning for Noisy Supervision

Comment: ICME 2021 Oral

Link:?http://arxiv.org/abs/2108.05092

Abstract

Learning with noisy labels has gained the enormous interest in the robustdeep learning area. Recent studies have empirically disclosed that utilizingdual networks can enhance the performance of single network but withouttheoretic proof. In this paper, we propose Cooperative Learning (CooL)framework for noisy supervision that analytically explains the effects ofleveraging dual or multiple networks. Specifically, the simple but efficientcombination in CooL yields a more reliable risk minimization for unseen cleandata. A range of experiments have been conducted on several benchmarks withboth synthetic and real-world settings. Extensive results indicate that CooLoutperforms several state-of-the-art methods.

ULTRA: An Unbiased Learning To Rank Algorithm Toolbox

Comment: 10 pages, 6 figures, CIKM conference

Link:?http://arxiv.org/abs/2108.05073

Abstract

Learning to rank systems has become an important aspect of our daily life.However, the implicit user feedback that is used to train many learning to rankmodels is usually noisy and suffered from user bias (i.e., position bias).Thus, obtaining an unbiased model using biased feedback has become an importantresearch field for IR. Existing studies on unbiased learning to rank (ULTR) canbe generalized into two families-algorithms that attain unbiasedness withlogged data, offline learning, and algorithms that achieve unbiasedness byestimating unbiased parameters with real-time user interactions, namely onlinelearning. While there exist many algorithms from both families, there lacks aunified way to compare and benchmark them. As a result, it can be challengingfor researchers to choose the right technique for their problems or for peoplewho are new to the field to learn and understand existing algorithms. To solvethis problem, we introduced ULTRA, which is a flexible, extensible, and easilyconfigure ULTR toolbox. Its key features include support for multiple ULTRalgorithms with configurable hyperparameters, a variety of built-in clickmodels that can be used separately to simulate clicks, different ranking modelarchitecture and evaluation metrics, and simple learning to rank pipelinecreation. In this paper, we discuss the general framework of ULTR, brieflydescribe the algorithms in ULTRA, detailed the structure, and pipeline of thetoolbox. We experimented on all the algorithms supported by ultra and showedthat the toolbox performance is reasonable. Our toolbox is an importantresource for researchers to conduct experiments on ULTR algorithms withdifferent configurations as well as testing their own algorithms with thesupported features.

Boosting the Generalization Capability in Cross-Domain Few-shot Learning via Noise-enhanced Supervised Autoencoder

Comment: Accepted at ICCV2021

Link:?http://arxiv.org/abs/2108.05028

Abstract

State of the art (SOTA) few-shot learning (FSL) methods suffer significantperformance drop in the presence of domain differences between source andtarget datasets. The strong discrimination ability on the source dataset doesnot necessarily translate to high classification accuracy on the targetdataset. In this work, we address this cross-domain few-shot learning (CDFSL)problem by boosting the generalization capability of the model. Specifically,we teach the model to capture broader variations of the feature distributionswith a novel noise-enhanced supervised autoencoder (NSAE). NSAE trains themodel by jointly reconstructing inputs and predicting the labels of inputs aswell as their reconstructed pairs. Theoretical analysis based on intra-classcorrelation (ICC) shows that the feature embeddings learned from NSAE havestronger discrimination and generalization abilities in the target domain. Wealso take advantage of NSAE structure and propose a two-step fine-tuningprocedure that achieves better adaption and improves classification performancein the target domain. Extensive experiments and ablation studies are conductedto demonstrate the effectiveness of the proposed method. Experimental resultsshow that our proposed method consistently outperforms SOTA methods undervarious conditions.

LightMove: A Lightweight Next-POI Recommendation for Taxicab Rooftop Advertising

Comment: Accepted in CIKM 2021

Link:?http://arxiv.org/abs/2108.04993

Abstract

Mobile digital billboards are an effective way to augment brand-awareness.Among various such mobile billboards, taxicab rooftop devices are emerging inthe market as a brand new media. Motov is a leading company in South Korea inthe taxicab rooftop advertising market. In this work, we present a lightweightyet accurate deep learning-based method to predict taxicabs' next locations tobetter prepare for targeted advertising based on demographic information oflocations. Considering the fact that next POI recommendation datasets arefrequently sparse, we design our presented model based on neural ordinary differential equations (NODEs), which are known to be robust tosparse/incorrect input, with several enhancements. Our model, which we callLightMove, has a larger prediction accuracy, a smaller number of parameters,and/or a smaller training/inference time, when evaluating with variousdatasets, in comparison with state-of-the-art models.

·

總結

以上是生活随笔為你收集整理的今日arXiv精选 | TNNLS/ICCV/TIP/ACM MM/CIKM/WWW/ICME的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

亚洲欧洲中文日韩av乱码 | 亚洲七七久久桃花影院 | 亚洲狠狠色丁香婷婷综合 | 国产成人无码专区 | 麻豆蜜桃av蜜臀av色欲av | 国语自产偷拍精品视频偷 | 免费网站看v片在线18禁无码 | 狂野欧美性猛交免费视频 | 自拍偷自拍亚洲精品被多人伦好爽 | 中文字幕精品av一区二区五区 | 99久久精品国产一区二区蜜芽 | 无码人妻少妇伦在线电影 | 欧美性色19p | 成年女人永久免费看片 | 97人妻精品一区二区三区 | 免费无码av一区二区 | 国产97在线 | 亚洲 | 亚洲欧美精品伊人久久 | 国产极品美女高潮无套在线观看 | а√天堂www在线天堂小说 | 亚洲国产精品无码一区二区三区 | 国产女主播喷水视频在线观看 | 97夜夜澡人人爽人人喊中国片 | 无码av免费一区二区三区试看 | 人妻无码αv中文字幕久久琪琪布 | 亚洲 激情 小说 另类 欧美 | 中文字幕人成乱码熟女app | 久久久久久亚洲精品a片成人 | 麻豆国产人妻欲求不满 | 人人妻人人澡人人爽精品欧美 | 99riav国产精品视频 | 亚洲熟妇色xxxxx亚洲 | 男女猛烈xx00免费视频试看 | 乱中年女人伦av三区 | 亚洲日本一区二区三区在线 | 国产午夜福利亚洲第一 | 水蜜桃亚洲一二三四在线 | 精品午夜福利在线观看 | 久久99久久99精品中文字幕 | 在线看片无码永久免费视频 | 日本精品人妻无码77777 天堂一区人妻无码 | 性做久久久久久久免费看 | 日本精品久久久久中文字幕 | 国产亚洲精品久久久久久国模美 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 日韩精品乱码av一区二区 | 中文字幕无码免费久久99 | 亚洲色在线无码国产精品不卡 | 一个人看的www免费视频在线观看 | 国产内射爽爽大片视频社区在线 | 人人妻人人藻人人爽欧美一区 | 成 人 免费观看网站 | 爆乳一区二区三区无码 | 久在线观看福利视频 | 欧美刺激性大交 | 国产无av码在线观看 | 亚洲七七久久桃花影院 | 亚洲人成网站免费播放 | 无码人妻精品一区二区三区下载 | 精品成在人线av无码免费看 | 色老头在线一区二区三区 | 国产人妻久久精品二区三区老狼 | 国产av一区二区三区最新精品 | 久久久久国色av免费观看性色 | 国产激情综合五月久久 | 成人片黄网站色大片免费观看 | 亚洲一区二区三区在线观看网站 | 高清国产亚洲精品自在久久 | 亚洲国产综合无码一区 | 免费男性肉肉影院 | 国产精品无码mv在线观看 | 色一情一乱一伦一视频免费看 | 漂亮人妻洗澡被公强 日日躁 | 亚洲国产成人a精品不卡在线 | 欧美丰满熟妇xxxx | 国产精品久久久 | 熟女体下毛毛黑森林 | 99riav国产精品视频 | 成年美女黄网站色大免费全看 | 宝宝好涨水快流出来免费视频 | 97资源共享在线视频 | 小sao货水好多真紧h无码视频 | 超碰97人人做人人爱少妇 | 欧美第一黄网免费网站 | 中国女人内谢69xxxxxa片 | 在线精品亚洲一区二区 | 久久久av男人的天堂 | 成人免费视频视频在线观看 免费 | 亚洲 日韩 欧美 成人 在线观看 | 成人aaa片一区国产精品 | 久久综合给合久久狠狠狠97色 | 国产色视频一区二区三区 | 国产精品丝袜黑色高跟鞋 | 我要看www免费看插插视频 | 西西人体www44rt大胆高清 | 成人欧美一区二区三区黑人免费 | 成熟女人特级毛片www免费 | 又紧又大又爽精品一区二区 | 国精产品一区二区三区 | 久久久精品国产sm最大网站 | 国产69精品久久久久app下载 | 国产偷抇久久精品a片69 | 婷婷综合久久中文字幕蜜桃三电影 | 午夜福利一区二区三区在线观看 | 久在线观看福利视频 | 波多野结衣av一区二区全免费观看 | 性生交大片免费看l | 日韩精品无码一本二本三本色 | 亚洲中文字幕久久无码 | 曰韩无码二三区中文字幕 | 免费人成网站视频在线观看 | 亚洲日韩一区二区 | 欧美日韩一区二区三区自拍 | 性欧美熟妇videofreesex | 国产色xx群视频射精 | 国产艳妇av在线观看果冻传媒 | 爱做久久久久久 | 欧美 丝袜 自拍 制服 另类 | 图片区 小说区 区 亚洲五月 | 一本一道久久综合久久 | 亚洲爆乳精品无码一区二区三区 | 欧美变态另类xxxx | 一本色道久久综合亚洲精品不卡 | 丁香花在线影院观看在线播放 | 性生交大片免费看女人按摩摩 | 国产乱码精品一品二品 | 亚洲阿v天堂在线 | 欧美性猛交内射兽交老熟妇 | 人妻熟女一区 | 亚洲狠狠色丁香婷婷综合 | 图片小说视频一区二区 | 水蜜桃亚洲一二三四在线 | 97资源共享在线视频 | 国产成人精品三级麻豆 | 国产色xx群视频射精 | 欧美国产日韩亚洲中文 | 日本乱偷人妻中文字幕 | 最新国产乱人伦偷精品免费网站 | 亚洲一区二区三区偷拍女厕 | 欧美野外疯狂做受xxxx高潮 | 久久久久久久人妻无码中文字幕爆 | 久久久久久久人妻无码中文字幕爆 | a在线观看免费网站大全 | 日日干夜夜干 | av香港经典三级级 在线 | 欧美精品国产综合久久 | 色欲人妻aaaaaaa无码 | 国产亚洲欧美在线专区 | 国产小呦泬泬99精品 | 成人三级无码视频在线观看 | 国产成人无码a区在线观看视频app | 在线观看国产午夜福利片 | 欧美精品在线观看 | 亚洲va欧美va天堂v国产综合 | 国产一区二区三区日韩精品 | 日本一区二区更新不卡 | 在线播放亚洲第一字幕 | 亚洲 日韩 欧美 成人 在线观看 | 人妻插b视频一区二区三区 | 98国产精品综合一区二区三区 | 内射白嫩少妇超碰 | 天天躁夜夜躁狠狠是什么心态 | 97夜夜澡人人爽人人喊中国片 | 大屁股大乳丰满人妻 | 香蕉久久久久久av成人 | 男女猛烈xx00免费视频试看 | 一本久久a久久精品亚洲 | 老熟女重囗味hdxx69 | 欧美丰满少妇xxxx性 | 免费人成网站视频在线观看 | 秋霞特色aa大片 | 1000部啪啪未满十八勿入下载 | 久久成人a毛片免费观看网站 | 精品偷拍一区二区三区在线看 | 久久国产自偷自偷免费一区调 | 伊在人天堂亚洲香蕉精品区 | 色婷婷久久一区二区三区麻豆 | 亚洲日韩中文字幕在线播放 | 日韩欧美中文字幕在线三区 | 精品厕所偷拍各类美女tp嘘嘘 | 蜜桃av抽搐高潮一区二区 | 成熟妇人a片免费看网站 | 麻豆蜜桃av蜜臀av色欲av | 国产舌乚八伦偷品w中 | 无人区乱码一区二区三区 | 无码毛片视频一区二区本码 | 我要看www免费看插插视频 | 久久熟妇人妻午夜寂寞影院 | 伊人久久大香线蕉午夜 | 欧美国产亚洲日韩在线二区 | 国产亚洲精品精品国产亚洲综合 | 日本熟妇大屁股人妻 | 真人与拘做受免费视频 | 亚洲日本在线电影 | 国产成人精品必看 | 无码乱肉视频免费大全合集 | 图片小说视频一区二区 | 2019nv天堂香蕉在线观看 | 久久精品中文闷骚内射 | 99久久99久久免费精品蜜桃 | 国产无套粉嫩白浆在线 | a在线亚洲男人的天堂 | 水蜜桃亚洲一二三四在线 | 一本久久a久久精品亚洲 | 亚洲日韩乱码中文无码蜜桃臀网站 | 中文字幕无码人妻少妇免费 | 久久久av男人的天堂 | 一二三四在线观看免费视频 | 国产极品视觉盛宴 | 久久99精品国产.久久久久 | 亚洲乱码国产乱码精品精 | 色综合天天综合狠狠爱 | 女人高潮内射99精品 | 大肉大捧一进一出视频出来呀 | 国产成人精品必看 | 国产热a欧美热a在线视频 | 又湿又紧又大又爽a视频国产 | 老司机亚洲精品影院无码 | 久精品国产欧美亚洲色aⅴ大片 | 亚洲精品久久久久avwww潮水 | 亚洲aⅴ无码成人网站国产app | 亚洲一区二区三区四区 | 亚洲毛片av日韩av无码 | 在线看片无码永久免费视频 | 欧美性猛交内射兽交老熟妇 | 俺去俺来也www色官网 | 国产香蕉尹人综合在线观看 | 少妇性l交大片欧洲热妇乱xxx | 中文字幕av日韩精品一区二区 | 人妻无码αv中文字幕久久琪琪布 | 久久熟妇人妻午夜寂寞影院 | 无码人妻久久一区二区三区不卡 | 欧洲熟妇色 欧美 | 东京热无码av男人的天堂 | 久久久婷婷五月亚洲97号色 | 日本欧美一区二区三区乱码 | 最新国产麻豆aⅴ精品无码 | 日本在线高清不卡免费播放 | 色综合久久久无码网中文 | 亚洲中文字幕va福利 | 成人欧美一区二区三区黑人免费 | 久久久婷婷五月亚洲97号色 | 国产午夜视频在线观看 | 日韩精品久久久肉伦网站 | 色噜噜亚洲男人的天堂 | 国产亚洲精品久久久久久久久动漫 | 国产精品久久久久影院嫩草 | 国产99久久精品一区二区 | 午夜丰满少妇性开放视频 | 欧洲熟妇精品视频 | 中文亚洲成a人片在线观看 | 露脸叫床粗话东北少妇 | 中文字幕久久久久人妻 | 东京无码熟妇人妻av在线网址 | 日韩视频 中文字幕 视频一区 | 午夜熟女插插xx免费视频 | 国产成人亚洲综合无码 | 久久久久免费看成人影片 | 内射白嫩少妇超碰 | 久青草影院在线观看国产 | 中文字幕人妻无码一区二区三区 | 99国产欧美久久久精品 | 国产真实乱对白精彩久久 | 99精品国产综合久久久久五月天 | 国产又粗又硬又大爽黄老大爷视 | 樱花草在线社区www | 日本丰满护士爆乳xxxx | 国产真实伦对白全集 | 青青青爽视频在线观看 | 国内综合精品午夜久久资源 | 欧美人与善在线com | 久久精品女人的天堂av | 2019午夜福利不卡片在线 | 国产av无码专区亚洲a∨毛片 | 久久99精品国产.久久久久 | 88国产精品欧美一区二区三区 | 中文精品久久久久人妻不卡 | 国产真人无遮挡作爱免费视频 | 亚洲中文无码av永久不收费 | 亚洲色欲色欲天天天www | 久久99国产综合精品 | 国产午夜无码视频在线观看 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 四虎国产精品一区二区 | 成人女人看片免费视频放人 | 国产成人综合美国十次 | 久久综合久久自在自线精品自 | 老子影院午夜精品无码 | 久久久中文字幕日本无吗 | 正在播放东北夫妻内射 | 99久久无码一区人妻 | 天天拍夜夜添久久精品 | 亚洲精品无码人妻无码 | 国产精品久久福利网站 | 国产成人精品无码播放 | 国产情侣作爱视频免费观看 | 亚洲男女内射在线播放 | 少妇人妻偷人精品无码视频 | 中文字幕无码人妻少妇免费 | 久久国产精品偷任你爽任你 | 国产卡一卡二卡三 | 伊人久久大香线蕉av一区二区 | 四虎国产精品一区二区 | 精品无人区无码乱码毛片国产 | 国产舌乚八伦偷品w中 | 国产香蕉尹人综合在线观看 | 97久久精品无码一区二区 | 亚洲成a人片在线观看日本 | 日本一区二区三区免费播放 | 国产精品久久久久久亚洲毛片 | 学生妹亚洲一区二区 | 乱码午夜-极国产极内射 | 激情人妻另类人妻伦 | 国产一区二区不卡老阿姨 | 欧美日本精品一区二区三区 | 久久精品女人天堂av免费观看 | 国产无遮挡又黄又爽又色 | 熟妇女人妻丰满少妇中文字幕 | 四虎国产精品免费久久 | 亚洲欧美精品伊人久久 | 国产激情艳情在线看视频 | 日日麻批免费40分钟无码 | 国产成人精品优优av | 狠狠色噜噜狠狠狠狠7777米奇 | 久久精品无码一区二区三区 | 女人色极品影院 | 55夜色66夜色国产精品视频 | 亚洲国产精品久久久天堂 | 任你躁国产自任一区二区三区 | 国产一区二区三区影院 | 亚洲欧美色中文字幕在线 | 午夜免费福利小电影 | 免费观看黄网站 | 国产av一区二区精品久久凹凸 | 男女超爽视频免费播放 | 在线成人www免费观看视频 | 精品久久久中文字幕人妻 | 成人av无码一区二区三区 | 欧美怡红院免费全部视频 | 久久无码中文字幕免费影院蜜桃 | 丰满妇女强制高潮18xxxx | 日本精品少妇一区二区三区 | 亚洲日本va午夜在线电影 | 免费乱码人妻系列无码专区 | 小鲜肉自慰网站xnxx | 成人三级无码视频在线观看 | 呦交小u女精品视频 | 欧美成人午夜精品久久久 | 日韩亚洲欧美中文高清在线 | 大地资源中文第3页 | 亚洲精品成人av在线 | аⅴ资源天堂资源库在线 | 久久久久亚洲精品中文字幕 | 亚洲自偷精品视频自拍 | 国产两女互慰高潮视频在线观看 | 亚洲熟妇色xxxxx欧美老妇y | 亚洲精品久久久久中文第一幕 | 日韩av无码一区二区三区 | 亚洲热妇无码av在线播放 | 国产午夜亚洲精品不卡 | 性做久久久久久久免费看 | 露脸叫床粗话东北少妇 | 亚洲午夜福利在线观看 | 少妇被粗大的猛进出69影院 | 亚洲国产一区二区三区在线观看 | 亚洲男人av香蕉爽爽爽爽 | 国产三级精品三级男人的天堂 | 成人综合网亚洲伊人 | 欧美猛少妇色xxxxx | 蜜桃无码一区二区三区 | 国产一区二区三区日韩精品 | 日韩视频 中文字幕 视频一区 | 欧美激情综合亚洲一二区 | 亚洲欧洲日本无在线码 | 色五月五月丁香亚洲综合网 | 波多野结衣av一区二区全免费观看 | 亚洲中文字幕av在天堂 | 最近中文2019字幕第二页 | 国产偷自视频区视频 | 真人与拘做受免费视频一 | 狠狠躁日日躁夜夜躁2020 | 性欧美videos高清精品 | 国产绳艺sm调教室论坛 | 天天爽夜夜爽夜夜爽 | 熟女少妇在线视频播放 | 久久亚洲日韩精品一区二区三区 | 国产熟女一区二区三区四区五区 | 国产卡一卡二卡三 | 日日碰狠狠丁香久燥 | 国产av剧情md精品麻豆 | 欧美老妇与禽交 | 亚洲爆乳精品无码一区二区三区 | 性生交片免费无码看人 | 精品午夜福利在线观看 | 最新国产乱人伦偷精品免费网站 | 中文字幕无码av波多野吉衣 | 99久久精品国产一区二区蜜芽 | 欧美自拍另类欧美综合图片区 | 精品水蜜桃久久久久久久 | 成人无码精品1区2区3区免费看 | 天干天干啦夜天干天2017 | 久久久久免费看成人影片 | 亚洲色偷偷偷综合网 | 国产在线无码精品电影网 | 精品人妻av区 | 久久久久se色偷偷亚洲精品av | 无码人妻出轨黑人中文字幕 | 亚洲熟妇色xxxxx欧美老妇y | 日本又色又爽又黄的a片18禁 | 欧美喷潮久久久xxxxx | 亚洲精品国偷拍自产在线麻豆 | 日本精品人妻无码77777 天堂一区人妻无码 | 性生交片免费无码看人 | 国产性生交xxxxx无码 | 亚洲天堂2017无码 | 最新国产乱人伦偷精品免费网站 | 伊人久久大香线焦av综合影院 | 极品尤物被啪到呻吟喷水 | 日韩欧美群交p片內射中文 | 日韩精品无码一区二区中文字幕 | 国产一区二区三区日韩精品 | 18无码粉嫩小泬无套在线观看 | 男女下面进入的视频免费午夜 | 中文字幕无码日韩欧毛 | 在线 国产 欧美 亚洲 天堂 | 蜜桃无码一区二区三区 | 精品无码av一区二区三区 | 国产乱人伦偷精品视频 | www国产亚洲精品久久久日本 | 日韩人妻少妇一区二区三区 | 97久久国产亚洲精品超碰热 | 娇妻被黑人粗大高潮白浆 | 中文字幕无码日韩欧毛 | 国产精品久久国产三级国 | 永久免费观看国产裸体美女 | 欧美国产日产一区二区 | 精品无码成人片一区二区98 | 乌克兰少妇xxxx做受 | 扒开双腿吃奶呻吟做受视频 | a片免费视频在线观看 | 色 综合 欧美 亚洲 国产 | 欧美老熟妇乱xxxxx | 欧美老人巨大xxxx做受 | 嫩b人妻精品一区二区三区 | 99国产欧美久久久精品 | 国产精品成人av在线观看 | 伊人久久大香线蕉av一区二区 | 亚洲综合精品香蕉久久网 | 天干天干啦夜天干天2017 | 免费看男女做好爽好硬视频 | 久久久久99精品成人片 | 国产真实夫妇视频 | 无码人妻丰满熟妇区五十路百度 | 一二三四在线观看免费视频 | 久久亚洲中文字幕无码 | 亚洲综合伊人久久大杳蕉 | 国产成人无码区免费内射一片色欲 | 精品日本一区二区三区在线观看 | 日韩精品久久久肉伦网站 | 亚洲熟妇色xxxxx欧美老妇 | 成人三级无码视频在线观看 | 亚洲国产精品久久久天堂 | 日韩精品久久久肉伦网站 | 性色欲网站人妻丰满中文久久不卡 | 中文字幕+乱码+中文字幕一区 | 亚洲成a人片在线观看无码3d | 日日橹狠狠爱欧美视频 | 欧美亚洲日韩国产人成在线播放 | 中文字幕人妻丝袜二区 | 久久亚洲中文字幕精品一区 | 成人片黄网站色大片免费观看 | 樱花草在线播放免费中文 | 天天拍夜夜添久久精品 | 西西人体www44rt大胆高清 | 精品无人国产偷自产在线 | 综合网日日天干夜夜久久 | 国产亚洲欧美日韩亚洲中文色 | 亚洲中文字幕在线观看 | 久在线观看福利视频 | 精品 日韩 国产 欧美 视频 | 国产精品手机免费 | 在线а√天堂中文官网 | 欧美人与禽zoz0性伦交 | 欧美高清在线精品一区 | 国产精品手机免费 | 国内精品人妻无码久久久影院蜜桃 | 丝袜 中出 制服 人妻 美腿 | 97夜夜澡人人爽人人喊中国片 | 人人澡人人透人人爽 | 亚洲精品国产品国语在线观看 | 欧美老妇交乱视频在线观看 | 色诱久久久久综合网ywww | 香蕉久久久久久av成人 | 国产成人精品一区二区在线小狼 | 国产婷婷色一区二区三区在线 | 国产激情艳情在线看视频 | 婷婷五月综合缴情在线视频 | 亚洲国产一区二区三区在线观看 | 国产人妻大战黑人第1集 | 亚洲精品国产精品乱码视色 | 国产农村乱对白刺激视频 | 帮老师解开蕾丝奶罩吸乳网站 | 国产午夜福利100集发布 | 亚洲精品成人福利网站 | 久久久精品456亚洲影院 | 日韩视频 中文字幕 视频一区 | 国产精品国产自线拍免费软件 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 熟妇人妻无码xxx视频 | 久久精品中文字幕一区 | 粗大的内捧猛烈进出视频 | 久久午夜无码鲁丝片秋霞 | 国语精品一区二区三区 | 2019nv天堂香蕉在线观看 | 国产精品亚洲专区无码不卡 | 久久无码专区国产精品s | 日日碰狠狠丁香久燥 | 少妇无码av无码专区在线观看 | 蜜桃臀无码内射一区二区三区 | 亚洲无人区一区二区三区 | 图片小说视频一区二区 | 夜精品a片一区二区三区无码白浆 | 亚洲大尺度无码无码专区 | 青草青草久热国产精品 | 国产热a欧美热a在线视频 | 久久精品国产一区二区三区肥胖 | 日日噜噜噜噜夜夜爽亚洲精品 | 国产情侣作爱视频免费观看 | 亚洲综合伊人久久大杳蕉 | 水蜜桃色314在线观看 | 老头边吃奶边弄进去呻吟 | 夜夜影院未满十八勿进 | 久久精品中文闷骚内射 | 国产亚洲精品久久久ai换 | 久久久久av无码免费网 | 亚洲色在线无码国产精品不卡 | 午夜精品久久久内射近拍高清 | 澳门永久av免费网站 | 娇妻被黑人粗大高潮白浆 | 乱码午夜-极国产极内射 | 中文字幕无线码免费人妻 | 激情五月综合色婷婷一区二区 | 国产综合色产在线精品 | 精品无人国产偷自产在线 | 国产激情精品一区二区三区 | 亚洲天堂2017无码 | 精品无码一区二区三区爱欲 | 久久99精品久久久久久 | 欧美zoozzooz性欧美 | 欧美怡红院免费全部视频 | 婷婷五月综合激情中文字幕 | 久久久久久久久蜜桃 | 色一情一乱一伦 | 麻豆av传媒蜜桃天美传媒 | 国产农村乱对白刺激视频 | 亚洲中文字幕无码中字 | 国产午夜精品一区二区三区嫩草 | 国产熟妇另类久久久久 | 亚洲精品综合一区二区三区在线 | 美女黄网站人色视频免费国产 | 亚洲熟妇色xxxxx欧美老妇 | 精品一二三区久久aaa片 | 国产麻豆精品精东影业av网站 | 老子影院午夜精品无码 | 亚洲狠狠婷婷综合久久 | 无码播放一区二区三区 | 在线播放亚洲第一字幕 | 国产情侣作爱视频免费观看 | 少妇被粗大的猛进出69影院 | 水蜜桃亚洲一二三四在线 | 欧洲精品码一区二区三区免费看 | 亚洲色大成网站www国产 | 呦交小u女精品视频 | 最新国产麻豆aⅴ精品无码 | 国内揄拍国内精品少妇国语 | 色综合久久久无码中文字幕 | 亚洲国产成人a精品不卡在线 | 中文字幕 人妻熟女 | 亚洲精品综合一区二区三区在线 | 久久久久成人片免费观看蜜芽 | 中文字幕人妻无码一区二区三区 | 日本一区二区更新不卡 | 国产艳妇av在线观看果冻传媒 | 国产激情一区二区三区 | 久久久久99精品成人片 | 国精品人妻无码一区二区三区蜜柚 | 欧美野外疯狂做受xxxx高潮 | 久久无码中文字幕免费影院蜜桃 | 扒开双腿吃奶呻吟做受视频 | 亚洲精品美女久久久久久久 | 中文字幕乱码中文乱码51精品 | 中文字幕+乱码+中文字幕一区 | 麻花豆传媒剧国产免费mv在线 | 在线成人www免费观看视频 | 色诱久久久久综合网ywww | 久久无码人妻影院 | 亚洲午夜久久久影院 | 国产精品亚洲а∨无码播放麻豆 | 麻豆蜜桃av蜜臀av色欲av | 无套内谢老熟女 | 亚洲中文字幕乱码av波多ji | 四十如虎的丰满熟妇啪啪 | 呦交小u女精品视频 | 麻豆蜜桃av蜜臀av色欲av | 蜜桃臀无码内射一区二区三区 | 少妇无码一区二区二三区 | 国产97在线 | 亚洲 | 精品国产aⅴ无码一区二区 | 呦交小u女精品视频 | 亚洲国产成人av在线观看 | 亚洲精品午夜国产va久久成人 | 欧美喷潮久久久xxxxx | 久久精品国产日本波多野结衣 | 日本欧美一区二区三区乱码 | 无码人妻久久一区二区三区不卡 | 日韩精品无码一区二区中文字幕 | 午夜精品久久久久久久 | 国产精品无码成人午夜电影 | 桃花色综合影院 | 成人免费视频一区二区 | 国产精品18久久久久久麻辣 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 国产激情综合五月久久 | 久久精品女人的天堂av | 欧美xxxx黑人又粗又长 | 一本色道久久综合亚洲精品不卡 | 东京热无码av男人的天堂 | 人妻夜夜爽天天爽三区 | 色噜噜亚洲男人的天堂 | 免费乱码人妻系列无码专区 | a片免费视频在线观看 | 精品亚洲韩国一区二区三区 | 色一情一乱一伦一视频免费看 | 2020最新国产自产精品 | 精品乱子伦一区二区三区 | 日韩视频 中文字幕 视频一区 | 久久综合给合久久狠狠狠97色 | 网友自拍区视频精品 | 野狼第一精品社区 | 国产av一区二区三区最新精品 | 免费无码午夜福利片69 | 欧美老熟妇乱xxxxx | 乌克兰少妇性做爰 | 清纯唯美经典一区二区 | 国产情侣作爱视频免费观看 | 乱码av麻豆丝袜熟女系列 | 免费无码肉片在线观看 | 草草网站影院白丝内射 | 免费观看又污又黄的网站 | 亚洲人成网站免费播放 | 福利一区二区三区视频在线观看 | 国内精品人妻无码久久久影院蜜桃 | 一本久久a久久精品亚洲 | 亚洲精品国偷拍自产在线麻豆 | 国精品人妻无码一区二区三区蜜柚 | 成人亚洲精品久久久久软件 | 午夜性刺激在线视频免费 | 亚洲精品一区二区三区婷婷月 | 亚洲成av人片在线观看无码不卡 | 秋霞成人午夜鲁丝一区二区三区 | 国内老熟妇对白xxxxhd | 真人与拘做受免费视频 | 亚洲の无码国产の无码步美 | 国模大胆一区二区三区 | 久久精品国产一区二区三区肥胖 | 俺去俺来也在线www色官网 | 无码乱肉视频免费大全合集 | 伊人久久大香线焦av综合影院 | 成人精品一区二区三区中文字幕 | 亚洲色欲色欲欲www在线 | 午夜福利试看120秒体验区 | 久久国产自偷自偷免费一区调 | 在线а√天堂中文官网 | 99国产精品白浆在线观看免费 | 久久久久人妻一区精品色欧美 | 四虎影视成人永久免费观看视频 | 欧美 丝袜 自拍 制服 另类 | 一个人免费观看的www视频 | 国产精品无码成人午夜电影 | 精品国产一区二区三区av 性色 | 任你躁国产自任一区二区三区 | 国产 精品 自在自线 | 中文字幕乱码人妻无码久久 | 日本xxxx色视频在线观看免费 | 麻豆国产97在线 | 欧洲 | 欧美日韩视频无码一区二区三 | 国产97色在线 | 免 | 久久国产精品偷任你爽任你 | 无码人妻少妇伦在线电影 | 亚洲国产欧美日韩精品一区二区三区 | 丝袜美腿亚洲一区二区 | 久久精品中文字幕大胸 | 少妇高潮喷潮久久久影院 | 一二三四社区在线中文视频 | 午夜无码人妻av大片色欲 | 好屌草这里只有精品 | 窝窝午夜理论片影院 | 蜜桃av抽搐高潮一区二区 | 亚洲国产一区二区三区在线观看 | 亚洲一区二区三区无码久久 | 四虎国产精品一区二区 | 男女猛烈xx00免费视频试看 | 国内精品人妻无码久久久影院蜜桃 | 黑人玩弄人妻中文在线 | 无码午夜成人1000部免费视频 | 麻豆精产国品 | 国产亚av手机在线观看 | 一本色道婷婷久久欧美 | 亚洲精品一区二区三区四区五区 | 久久视频在线观看精品 | 免费观看激色视频网站 | 激情内射亚州一区二区三区爱妻 | 亚洲日韩av一区二区三区四区 | 国产精品对白交换视频 | 国产精品高潮呻吟av久久 | 中文字幕无码乱人伦 | 无遮挡国产高潮视频免费观看 | 人妻少妇精品久久 | 成人免费视频一区二区 | 大肉大捧一进一出视频出来呀 | 久久亚洲a片com人成 | 少妇无码av无码专区在线观看 | 日韩欧美中文字幕在线三区 | 国产精品无码成人午夜电影 | 国产又粗又硬又大爽黄老大爷视 | 国产精品第一国产精品 | 一本一道久久综合久久 | 欧美人与禽zoz0性伦交 | 久久亚洲国产成人精品性色 | 亚洲精品午夜无码电影网 | 欧美亚洲国产一区二区三区 | 亚洲综合无码久久精品综合 | 欧美一区二区三区视频在线观看 | 伊人色综合久久天天小片 | 午夜福利不卡在线视频 | 久久精品中文字幕一区 | 粗大的内捧猛烈进出视频 | 国产性生交xxxxx无码 | 欧美精品在线观看 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 欧美freesex黑人又粗又大 | 波多野结衣乳巨码无在线观看 | 暴力强奷在线播放无码 | 欧美35页视频在线观看 | 97se亚洲精品一区 | 国产综合色产在线精品 | 天天躁日日躁狠狠躁免费麻豆 | 老子影院午夜伦不卡 | 激情亚洲一区国产精品 | 狠狠色欧美亚洲狠狠色www | 亚洲中文字幕久久无码 | 强开小婷嫩苞又嫩又紧视频 | 小泽玛莉亚一区二区视频在线 | 呦交小u女精品视频 | 亚洲娇小与黑人巨大交 | 国产97人人超碰caoprom | 国产福利视频一区二区 | 亚洲 另类 在线 欧美 制服 | av无码久久久久不卡免费网站 | 国产精品免费大片 | 精品少妇爆乳无码av无码专区 | 精品无码一区二区三区爱欲 | 久久久久99精品国产片 | 国产精品欧美成人 | 亚洲精品一区二区三区在线 | 东京无码熟妇人妻av在线网址 | 欧美国产亚洲日韩在线二区 | 蜜桃av抽搐高潮一区二区 | 麻豆精品国产精华精华液好用吗 | 亚洲乱码日产精品bd | 久久综合激激的五月天 | 强伦人妻一区二区三区视频18 | 小鲜肉自慰网站xnxx | 水蜜桃色314在线观看 | 久9re热视频这里只有精品 | 国产免费久久精品国产传媒 | 中文字幕乱码人妻二区三区 | 国产激情艳情在线看视频 | 久久久婷婷五月亚洲97号色 | 骚片av蜜桃精品一区 | 少妇高潮一区二区三区99 | 亚洲国产综合无码一区 | 国内精品九九久久久精品 | 国产人妻大战黑人第1集 | 国产精品久久久久影院嫩草 | 小鲜肉自慰网站xnxx | 麻豆av传媒蜜桃天美传媒 | 曰韩少妇内射免费播放 | 天海翼激烈高潮到腰振不止 | 亲嘴扒胸摸屁股激烈网站 | 精品乱子伦一区二区三区 | 国产精品久久国产三级国 | 久久亚洲a片com人成 | 最近中文2019字幕第二页 | 精品aⅴ一区二区三区 | 丰满少妇女裸体bbw | 亚洲色成人中文字幕网站 | 曰韩无码二三区中文字幕 | 一二三四在线观看免费视频 | 久热国产vs视频在线观看 | 国产成人无码午夜视频在线观看 | 国产亚洲人成在线播放 | 奇米影视7777久久精品人人爽 | 亚洲综合在线一区二区三区 | 亚洲 日韩 欧美 成人 在线观看 | 一本久久伊人热热精品中文字幕 | 日本一区二区三区免费播放 | 精品夜夜澡人妻无码av蜜桃 | 中文字幕乱妇无码av在线 | 中文字幕乱码亚洲无线三区 | 在线播放免费人成毛片乱码 | 青青青手机频在线观看 | a在线亚洲男人的天堂 | 六十路熟妇乱子伦 | 国产精品久久久av久久久 | 欧美一区二区三区视频在线观看 | 久久久亚洲欧洲日产国码αv | 少妇一晚三次一区二区三区 | 亚洲精品无码人妻无码 | 无码av最新清无码专区吞精 | 亚洲欧美国产精品久久 | 亚洲无人区一区二区三区 | 欧美阿v高清资源不卡在线播放 | 四虎影视成人永久免费观看视频 | 亚洲爆乳大丰满无码专区 | 荡女精品导航 | 日韩在线不卡免费视频一区 | 丰满少妇人妻久久久久久 | √天堂中文官网8在线 | 亚洲精品无码国产 | 国产精品久久久午夜夜伦鲁鲁 | 日日天干夜夜狠狠爱 | 精品水蜜桃久久久久久久 | 久久无码中文字幕免费影院蜜桃 | 欧美日韩在线亚洲综合国产人 | 97久久超碰中文字幕 | 99久久无码一区人妻 | 国产又粗又硬又大爽黄老大爷视 | 午夜时刻免费入口 | 亚洲一区二区三区播放 | 国产精品久久久 | 国产精品久久久久久亚洲毛片 | 国产精品久久久久9999小说 | 中文字幕人成乱码熟女app | 国产午夜视频在线观看 | 婷婷丁香六月激情综合啪 | 国产精品毛片一区二区 | 东京热无码av男人的天堂 | 任你躁国产自任一区二区三区 | 久久五月精品中文字幕 | 一本色道婷婷久久欧美 | 中文字幕无码免费久久9一区9 | 夜精品a片一区二区三区无码白浆 | 又色又爽又黄的美女裸体网站 | 2020最新国产自产精品 | 国产成人一区二区三区在线观看 | 亚洲爆乳大丰满无码专区 | 少妇人妻av毛片在线看 | 亚洲国产av美女网站 | 国产精品无码久久av | √天堂中文官网8在线 | 欧美午夜特黄aaaaaa片 | 欧美变态另类xxxx | 在线看片无码永久免费视频 | 亚洲日韩av片在线观看 | 天天躁夜夜躁狠狠是什么心态 | 色综合久久久久综合一本到桃花网 | 67194成是人免费无码 | 亚洲自偷精品视频自拍 | 男女猛烈xx00免费视频试看 | 小泽玛莉亚一区二区视频在线 | 国产亚洲人成在线播放 | 亚洲欧美中文字幕5发布 | 大乳丰满人妻中文字幕日本 | 国产亲子乱弄免费视频 | 国产精品久久国产精品99 | 国产麻豆精品精东影业av网站 | 亚洲va中文字幕无码久久不卡 | 国产精品高潮呻吟av久久 | 激情内射日本一区二区三区 | 天堂久久天堂av色综合 | 性开放的女人aaa片 | 午夜嘿嘿嘿影院 | 久久国产精品萌白酱免费 | 又黄又爽又色的视频 | 无套内谢的新婚少妇国语播放 | 成人免费视频在线观看 | 日本精品高清一区二区 | 亚洲国产欧美国产综合一区 | 国产亚洲精品久久久久久 | 波多野结衣乳巨码无在线观看 | 娇妻被黑人粗大高潮白浆 | 亚洲熟妇自偷自拍另类 | 欧美丰满少妇xxxx性 | 理论片87福利理论电影 | 久久久亚洲欧洲日产国码αv | 久久亚洲国产成人精品性色 | 国产日产欧产精品精品app | 大地资源中文第3页 | 中文久久乱码一区二区 | 中文字幕乱码中文乱码51精品 | 中文字幕无线码 | 亚洲日韩av一区二区三区中文 | 国产手机在线αⅴ片无码观看 | 欧美亚洲日韩国产人成在线播放 | 无码av岛国片在线播放 | 九月婷婷人人澡人人添人人爽 | 极品尤物被啪到呻吟喷水 | 丁香花在线影院观看在线播放 | 欧美zoozzooz性欧美 | 亚洲乱码日产精品bd | 久久99精品久久久久久动态图 | 国产成人精品视频ⅴa片软件竹菊 | 国产99久久精品一区二区 | 久久久精品456亚洲影院 | 亚洲爆乳无码专区 | 18禁黄网站男男禁片免费观看 | 乱人伦人妻中文字幕无码 | 亚洲熟悉妇女xxx妇女av | 国产国语老龄妇女a片 | 人人妻人人澡人人爽欧美一区 | 成人性做爰aaa片免费看不忠 | 国产卡一卡二卡三 | 动漫av网站免费观看 | 国产精品久久久久久亚洲毛片 | 欧美性生交活xxxxxdddd | 成人无码视频在线观看网站 | 久久久久免费精品国产 | 夜夜影院未满十八勿进 | 久久久久亚洲精品男人的天堂 | 久久久久久久人妻无码中文字幕爆 | 久久99精品国产.久久久久 | 无码福利日韩神码福利片 | 老司机亚洲精品影院 | 久久精品国产99精品亚洲 | 黑人大群体交免费视频 | 欧美放荡的少妇 | 精品国产成人一区二区三区 | 久久精品中文闷骚内射 | 人人妻人人澡人人爽欧美一区九九 | 欧美高清在线精品一区 | 日本免费一区二区三区最新 | 好屌草这里只有精品 | 天天做天天爱天天爽综合网 | 国产成人无码区免费内射一片色欲 | 中文字幕乱妇无码av在线 | 欧美黑人性暴力猛交喷水 | 2020久久香蕉国产线看观看 | 成年美女黄网站色大免费全看 | av人摸人人人澡人人超碰下载 | 一个人看的www免费视频在线观看 | 日日摸夜夜摸狠狠摸婷婷 | 激情人妻另类人妻伦 | 免费人成在线视频无码 | 亚洲色大成网站www | 久久国产精品精品国产色婷婷 | 久久国产精品萌白酱免费 | а天堂中文在线官网 | 在线观看国产午夜福利片 | 大地资源网第二页免费观看 | 桃花色综合影院 | 熟女俱乐部五十路六十路av | 中文字幕 亚洲精品 第1页 | 国产农村乱对白刺激视频 | 成人精品视频一区二区 | 粗大的内捧猛烈进出视频 | 人人澡人人妻人人爽人人蜜桃 | 精品国产乱码久久久久乱码 | 少妇无码av无码专区在线观看 | 亚洲爆乳精品无码一区二区三区 | 丰满少妇高潮惨叫视频 | 沈阳熟女露脸对白视频 | 久久久久免费精品国产 | 未满小14洗澡无码视频网站 | 久久天天躁狠狠躁夜夜免费观看 | 国产精品无套呻吟在线 | 日韩亚洲欧美中文高清在线 | 狠狠色欧美亚洲狠狠色www | 亚洲一区二区三区在线观看网站 | 亚洲日本一区二区三区在线 | 久久这里只有精品视频9 | 亚洲精品一区三区三区在线观看 | 小鲜肉自慰网站xnxx | 97夜夜澡人人爽人人喊中国片 | 中文字幕无码日韩欧毛 | 最新国产麻豆aⅴ精品无码 | 久久久久av无码免费网 | 7777奇米四色成人眼影 | 国产成人综合色在线观看网站 | 成人精品视频一区二区 | 在线成人www免费观看视频 | 熟妇人妻中文av无码 | 国产午夜福利100集发布 | 国产超碰人人爽人人做人人添 | 久久久婷婷五月亚洲97号色 | 一本加勒比波多野结衣 | 国产免费无码一区二区视频 | 国产精品a成v人在线播放 | 十八禁真人啪啪免费网站 | 亚洲自偷自拍另类第1页 | 亚洲码国产精品高潮在线 | 国产午夜无码视频在线观看 | 国产熟妇高潮叫床视频播放 | 蜜臀av无码人妻精品 | 色综合久久88色综合天天 | 美女张开腿让人桶 | 娇妻被黑人粗大高潮白浆 | 国产精品免费大片 | 午夜理论片yy44880影院 | 国产av无码专区亚洲a∨毛片 | 免费网站看v片在线18禁无码 | 青青草原综合久久大伊人精品 | 欧美日本免费一区二区三区 | 亚洲第一无码av无码专区 | 亚洲国产精品久久人人爱 | 激情国产av做激情国产爱 | 色一情一乱一伦一视频免费看 | 国产办公室秘书无码精品99 | 男女性色大片免费网站 | 一个人看的www免费视频在线观看 | 久在线观看福利视频 | 亚洲中文字幕乱码av波多ji | 亚洲爆乳大丰满无码专区 | 成人无码精品1区2区3区免费看 | 国产精品美女久久久久av爽李琼 | 欧美日本精品一区二区三区 | 日韩av无码一区二区三区 | 亚洲一区二区三区香蕉 | 国产莉萝无码av在线播放 | 国产av久久久久精东av | 欧美三级a做爰在线观看 | 久久人人爽人人爽人人片ⅴ | 亚洲午夜无码久久 | 秋霞特色aa大片 | 人人澡人人妻人人爽人人蜜桃 | 人妻有码中文字幕在线 | 精品熟女少妇av免费观看 | 中文字幕日韩精品一区二区三区 | 99久久精品无码一区二区毛片 | 国产色xx群视频射精 | 人妻与老人中文字幕 | 亚洲欧美色中文字幕在线 | 伊人久久大香线蕉av一区二区 | a片免费视频在线观看 | 青春草在线视频免费观看 | 国产人妻人伦精品1国产丝袜 | 77777熟女视频在线观看 а天堂中文在线官网 | 久久久久免费精品国产 | 99riav国产精品视频 | 成熟女人特级毛片www免费 | 国产精品理论片在线观看 | 无码人妻黑人中文字幕 | 日韩精品无码免费一区二区三区 | 欧美一区二区三区视频在线观看 | 老子影院午夜精品无码 | 亚洲欧美国产精品专区久久 | 亚洲国产欧美在线成人 | 色综合久久中文娱乐网 | 中文字幕人妻丝袜二区 | 中文亚洲成a人片在线观看 | 欧美肥老太牲交大战 | 久久午夜无码鲁丝片秋霞 | 国内精品人妻无码久久久影院蜜桃 | 97精品人妻一区二区三区香蕉 | 又大又紧又粉嫩18p少妇 | 99国产精品白浆在线观看免费 | 丝袜美腿亚洲一区二区 | 国产在线精品一区二区三区直播 | 亚洲熟熟妇xxxx | 狠狠躁日日躁夜夜躁2020 | 欧美熟妇另类久久久久久多毛 | 人妻尝试又大又粗久久 | 亚洲乱码中文字幕在线 | 狠狠躁日日躁夜夜躁2020 | 无码av免费一区二区三区试看 | 疯狂三人交性欧美 | 亚洲狠狠色丁香婷婷综合 | 日韩av无码一区二区三区 | 99麻豆久久久国产精品免费 | 乱中年女人伦av三区 | 蜜桃无码一区二区三区 | 日本乱人伦片中文三区 | 国产成人精品三级麻豆 | 日产国产精品亚洲系列 | 麻豆md0077饥渴少妇 | 沈阳熟女露脸对白视频 | v一区无码内射国产 | 一本大道久久东京热无码av | 中文精品久久久久人妻不卡 | 成人无码精品一区二区三区 | 欧美日韩亚洲国产精品 | 少妇无码一区二区二三区 | 水蜜桃色314在线观看 | 少女韩国电视剧在线观看完整 | 狂野欧美性猛xxxx乱大交 | 无码一区二区三区在线观看 | 亚洲综合无码一区二区三区 | 国产一区二区三区影院 | 国内精品一区二区三区不卡 | 亚洲熟悉妇女xxx妇女av | 波多野结衣一区二区三区av免费 | 久久久久99精品成人片 | 欧美性生交活xxxxxdddd | 日本精品人妻无码免费大全 | 99精品久久毛片a片 | 久久久精品456亚洲影院 | 久久精品中文字幕一区 | 精品熟女少妇av免费观看 | 十八禁视频网站在线观看 | 午夜精品一区二区三区在线观看 | 国产三级精品三级男人的天堂 | 夜夜高潮次次欢爽av女 | 国产精品18久久久久久麻辣 | 国产97在线 | 亚洲 | 未满成年国产在线观看 | 成人综合网亚洲伊人 | 真人与拘做受免费视频 | 国产在线一区二区三区四区五区 | 国内精品久久久久久中文字幕 | 性欧美熟妇videofreesex | 午夜无码人妻av大片色欲 | 日本在线高清不卡免费播放 | 亚洲精品午夜无码电影网 | 亚洲欧美精品aaaaaa片 | 1000部夫妻午夜免费 | 亚洲国产av美女网站 | 精品人人妻人人澡人人爽人人 | 精品国产乱码久久久久乱码 | 日韩av无码一区二区三区不卡 | 老子影院午夜精品无码 | 亚洲性无码av中文字幕 | 99在线 | 亚洲 | 亚洲中文字幕在线无码一区二区 | 国产精品.xx视频.xxtv | 色老头在线一区二区三区 | 国产成人综合美国十次 | 18无码粉嫩小泬无套在线观看 | 国产精品国产三级国产专播 | 无遮挡国产高潮视频免费观看 | 2020久久香蕉国产线看观看 | 日日摸天天摸爽爽狠狠97 | 天天av天天av天天透 | 色情久久久av熟女人妻网站 | 5858s亚洲色大成网站www | 精品国产青草久久久久福利 | 国产肉丝袜在线观看 | 日韩精品无码免费一区二区三区 | 国产艳妇av在线观看果冻传媒 | 久久精品国产一区二区三区肥胖 | 在线观看欧美一区二区三区 | 东京一本一道一二三区 | 综合网日日天干夜夜久久 | 激情综合激情五月俺也去 | 国产熟女一区二区三区四区五区 | 日本丰满熟妇videos | 好男人社区资源 | 国产在热线精品视频 | 无套内射视频囯产 | 国产情侣作爱视频免费观看 | 呦交小u女精品视频 | 又大又硬又黄的免费视频 | 中文无码伦av中文字幕 | 无码精品人妻一区二区三区av | 日韩 欧美 动漫 国产 制服 | 国产尤物精品视频 | 午夜熟女插插xx免费视频 | 中文字幕乱码亚洲无线三区 | 亚洲日韩一区二区 | 精品一区二区三区波多野结衣 | 成人欧美一区二区三区黑人 | 少妇被粗大的猛进出69影院 | 色婷婷香蕉在线一区二区 | 色婷婷综合中文久久一本 | 丰满少妇人妻久久久久久 | 乱人伦人妻中文字幕无码久久网 | 极品尤物被啪到呻吟喷水 | 思思久久99热只有频精品66 | 国产免费观看黄av片 | 人妻互换免费中文字幕 | 又湿又紧又大又爽a视频国产 | 亚洲综合无码一区二区三区 | 欧美国产亚洲日韩在线二区 | 高清不卡一区二区三区 | 爆乳一区二区三区无码 | 性色av无码免费一区二区三区 | 又色又爽又黄的美女裸体网站 | 日日摸夜夜摸狠狠摸婷婷 | 久久久久久亚洲精品a片成人 | 国产真实伦对白全集 | 精品国偷自产在线 | 国产av剧情md精品麻豆 | 亚洲中文字幕无码一久久区 | 一区二区三区乱码在线 | 欧洲 | 久久亚洲中文字幕无码 | 日本va欧美va欧美va精品 | 亚洲色欲久久久综合网东京热 | 精品偷拍一区二区三区在线看 | 欧美日韩色另类综合 | 人妻互换免费中文字幕 | 又大又黄又粗又爽的免费视频 | 精品亚洲韩国一区二区三区 | 免费视频欧美无人区码 | 久久无码中文字幕免费影院蜜桃 | 天堂亚洲2017在线观看 | 国产精品久久久午夜夜伦鲁鲁 | 国产va免费精品观看 | 欧美乱妇无乱码大黄a片 | 久久久久久国产精品无码下载 | 亚洲精品国产精品乱码不卡 | 亚洲成色在线综合网站 | 高清国产亚洲精品自在久久 | 国产精品人人妻人人爽 | 亚洲欧美色中文字幕在线 | 国产精品无码一区二区三区不卡 | 蜜桃视频插满18在线观看 | 欧洲精品码一区二区三区免费看 | 精品亚洲成av人在线观看 | 成人免费无码大片a毛片 | 蜜臀aⅴ国产精品久久久国产老师 | 久久精品成人欧美大片 | 中文字幕+乱码+中文字幕一区 | 日韩欧美群交p片內射中文 | 亚洲中文字幕va福利 | 亚洲小说图区综合在线 | 午夜无码人妻av大片色欲 | 亚洲熟熟妇xxxx | 影音先锋中文字幕无码 | 无码一区二区三区在线观看 | 亚洲另类伦春色综合小说 | 亚洲一区二区三区播放 | 久久综合狠狠综合久久综合88 | av香港经典三级级 在线 | 久久亚洲国产成人精品性色 | 日本熟妇人妻xxxxx人hd | 久久精品女人的天堂av | 国产艳妇av在线观看果冻传媒 | 国内精品久久毛片一区二区 | 久久精品国产亚洲精品 | 久久成人a毛片免费观看网站 | 九九综合va免费看 | 熟妇人妻无码xxx视频 | 国产婷婷色一区二区三区在线 | 亚洲成a人片在线观看无码3d | 人人妻人人澡人人爽精品欧美 | 国产精品亚洲一区二区三区喷水 | 国产精品免费大片 | 国产色在线 | 国产 | 亚洲精品一区二区三区在线 | 亚洲人亚洲人成电影网站色 | 久久国语露脸国产精品电影 | 在线播放免费人成毛片乱码 | 亚洲中文字幕在线无码一区二区 | 人人妻人人澡人人爽欧美一区九九 | 日本又色又爽又黄的a片18禁 | 亚洲男人av天堂午夜在 | 性欧美熟妇videofreesex | 婷婷综合久久中文字幕蜜桃三电影 | 强伦人妻一区二区三区视频18 | 97精品国产97久久久久久免费 | 欧美丰满老熟妇xxxxx性 | ass日本丰满熟妇pics | 亚洲 激情 小说 另类 欧美 | 欧美怡红院免费全部视频 | 久久午夜无码鲁丝片午夜精品 | 国产色视频一区二区三区 | 丰满少妇高潮惨叫视频 | 国产成人综合在线女婷五月99播放 | 精品久久久久久亚洲精品 | 色综合久久88色综合天天 | 成人aaa片一区国产精品 | 大乳丰满人妻中文字幕日本 | 国产电影无码午夜在线播放 | 亚洲成a人片在线观看无码3d | 亚洲精品国产a久久久久久 | 亚洲成av人片在线观看无码不卡 | 日日摸日日碰夜夜爽av | 蜜桃av抽搐高潮一区二区 | 中文字幕无码免费久久99 | 亚洲国产欧美在线成人 | 黄网在线观看免费网站 | 精品无人区无码乱码毛片国产 | 97色伦图片97综合影院 | 欧美 日韩 亚洲 在线 | 亚洲国产精品一区二区第一页 | 国产凸凹视频一区二区 | 久久人人爽人人人人片 | 又黄又爽又色的视频 | 亚洲成a人片在线观看无码 | 99久久精品无码一区二区毛片 | 一个人看的视频www在线 | 丰满人妻精品国产99aⅴ | 国产成人久久精品流白浆 | 国产成人无码a区在线观看视频app | 国产乱人偷精品人妻a片 | 精品久久久久久人妻无码中文字幕 | 日本免费一区二区三区最新 | 亚洲 日韩 欧美 成人 在线观看 | 欧美兽交xxxx×视频 | 日韩欧美群交p片內射中文 | 日韩精品无码一本二本三本色 | 亚洲欧美中文字幕5发布 | 九九久久精品国产免费看小说 | 人人超人人超碰超国产 | 无码人妻久久一区二区三区不卡 | 色欲久久久天天天综合网精品 | 日本熟妇人妻xxxxx人hd | 日韩精品无码一区二区中文字幕 | 久久综合九色综合欧美狠狠 | 国产精品福利视频导航 | 亚洲精品国偷拍自产在线观看蜜桃 | 无码人妻出轨黑人中文字幕 | 国产精品亚洲综合色区韩国 | 一二三四在线观看免费视频 | 双乳奶水饱满少妇呻吟 | 久青草影院在线观看国产 | 欧美精品免费观看二区 | 久久久久人妻一区精品色欧美 | 水蜜桃亚洲一二三四在线 | 精品aⅴ一区二区三区 | 日韩精品久久久肉伦网站 | 亚洲精品欧美二区三区中文字幕 | 日韩欧美群交p片內射中文 | 中国大陆精品视频xxxx | 人妻无码αv中文字幕久久琪琪布 | 中文字幕av伊人av无码av | 国产成人无码一二三区视频 | 熟女少妇人妻中文字幕 | 精品国产福利一区二区 | 中文字幕乱码亚洲无线三区 | 国产精品久久久久无码av色戒 | 国产成人无码午夜视频在线观看 | 午夜福利电影 | 丰满人妻被黑人猛烈进入 | 97无码免费人妻超级碰碰夜夜 | 国产另类ts人妖一区二区 | 国产精品久久久 | 精品国产福利一区二区 | 国内综合精品午夜久久资源 | 国产 精品 自在自线 | 亚洲中文无码av永久不收费 | 亚洲国产av美女网站 | 午夜男女很黄的视频 | 久久久精品456亚洲影院 | 国产精品人人爽人人做我的可爱 | 亚洲男女内射在线播放 | 亚洲欧美日韩国产精品一区二区 | 人人爽人人爽人人片av亚洲 | 99久久精品无码一区二区毛片 | 色老头在线一区二区三区 | 亚洲精品欧美二区三区中文字幕 | 国产无套内射久久久国产 | 国产又粗又硬又大爽黄老大爷视 | 日韩精品一区二区av在线 | 午夜成人1000部免费视频 | 日韩欧美成人免费观看 | 三上悠亚人妻中文字幕在线 | 乱人伦人妻中文字幕无码久久网 | 老熟妇乱子伦牲交视频 | 亚洲娇小与黑人巨大交 | 日产精品高潮呻吟av久久 | 亚洲国产精品久久久久久 | 成熟人妻av无码专区 | 成 人影片 免费观看 | 久久五月精品中文字幕 | 永久免费观看国产裸体美女 | 亚洲色无码一区二区三区 | 俺去俺来也www色官网 | 好爽又高潮了毛片免费下载 | 麻花豆传媒剧国产免费mv在线 | 亚洲熟妇色xxxxx亚洲 | 亚洲精品午夜无码电影网 | 国产精品高潮呻吟av久久4虎 | 熟妇人妻无乱码中文字幕 | 久久无码专区国产精品s | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 国产莉萝无码av在线播放 | 久久这里只有精品视频9 | 天干天干啦夜天干天2017 | 最新国产乱人伦偷精品免费网站 | 亚洲国产av精品一区二区蜜芽 | 亚洲熟妇自偷自拍另类 | 丁香花在线影院观看在线播放 | 国产成人综合在线女婷五月99播放 | 中文字幕日产无线码一区 | 天天躁夜夜躁狠狠是什么心态 | 亚洲精品综合一区二区三区在线 | 国产成人无码a区在线观看视频app | 亚洲综合精品香蕉久久网 | 无套内谢的新婚少妇国语播放 | 国产精品久久久久无码av色戒 | 精品aⅴ一区二区三区 | 国产av一区二区精品久久凹凸 | 久久婷婷五月综合色国产香蕉 | 国产舌乚八伦偷品w中 | 精品欧美一区二区三区久久久 | 久久亚洲中文字幕无码 | 欧美变态另类xxxx | 激情内射日本一区二区三区 | 日韩av无码一区二区三区 | 中文字幕色婷婷在线视频 | 日本一卡2卡3卡四卡精品网站 | 精品乱码久久久久久久 | 色婷婷欧美在线播放内射 | 国产真实乱对白精彩久久 | 亚洲一区二区三区香蕉 | 精品无人国产偷自产在线 | 国产免费观看黄av片 | 国内少妇偷人精品视频 | 成人无码精品一区二区三区 | 久热国产vs视频在线观看 | 最近的中文字幕在线看视频 | 国产成人综合美国十次 | 国内精品人妻无码久久久影院 | 国产成人av免费观看 | 亚洲日韩乱码中文无码蜜桃臀网站 | 中文字幕人妻无码一区二区三区 | 97人妻精品一区二区三区 | 国产精品va在线观看无码 | 国产精品第一区揄拍无码 | 日日噜噜噜噜夜夜爽亚洲精品 | 国产一区二区三区四区五区加勒比 | 婷婷综合久久中文字幕蜜桃三电影 | 乱人伦中文视频在线观看 | 国产香蕉尹人综合在线观看 | 欧美高清在线精品一区 | 国产网红无码精品视频 | 亚洲人亚洲人成电影网站色 | 成人欧美一区二区三区黑人 | 激情五月综合色婷婷一区二区 | 免费观看的无遮挡av | 樱花草在线社区www | 亚洲精品鲁一鲁一区二区三区 | 樱花草在线播放免费中文 | 在线а√天堂中文官网 | 亚洲aⅴ无码成人网站国产app | 久久久www成人免费毛片 | 无套内谢的新婚少妇国语播放 | 成 人 网 站国产免费观看 | 精品一区二区三区波多野结衣 | 中文字幕无码免费久久9一区9 | 久久婷婷五月综合色国产香蕉 | 精品人妻人人做人人爽 | 97无码免费人妻超级碰碰夜夜 | 小sao货水好多真紧h无码视频 | 精品少妇爆乳无码av无码专区 | 久久精品丝袜高跟鞋 | 欧美人与善在线com | 天堂久久天堂av色综合 | 又粗又大又硬毛片免费看 | 亚洲一区二区三区在线观看网站 | 国产成人综合美国十次 | 国产另类ts人妖一区二区 | 成人无码视频在线观看网站 | 中文字幕无码热在线视频 | 国产精品a成v人在线播放 | 熟妇女人妻丰满少妇中文字幕 | 黑人玩弄人妻中文在线 | 在线观看欧美一区二区三区 | 久久无码中文字幕免费影院蜜桃 | 无遮无挡爽爽免费视频 | 国产精品亚洲一区二区三区喷水 | 中文字幕无码乱人伦 | 国产精品久久久久影院嫩草 | 天下第一社区视频www日本 | 老司机亚洲精品影院 | 久久久久成人片免费观看蜜芽 | 日韩精品久久久肉伦网站 | 好爽又高潮了毛片免费下载 | 久久亚洲精品中文字幕无男同 | 精品乱子伦一区二区三区 | 99riav国产精品视频 | 亚洲日韩一区二区三区 | 欧美激情综合亚洲一二区 | 亚洲熟悉妇女xxx妇女av | 小鲜肉自慰网站xnxx | 欧美国产日韩久久mv | 99麻豆久久久国产精品免费 | 成年美女黄网站色大免费全看 | 午夜精品一区二区三区的区别 | 天堂а√在线地址中文在线 | 麻豆国产丝袜白领秘书在线观看 | 国产亚洲日韩欧美另类第八页 | 装睡被陌生人摸出水好爽 | 亚洲一区二区三区偷拍女厕 | 久久久www成人免费毛片 | 99riav国产精品视频 | 久久精品人妻少妇一区二区三区 | 欧美性黑人极品hd | 精品国产一区av天美传媒 | 亚洲成a人片在线观看无码3d | 波多野42部无码喷潮在线 | 欧洲熟妇精品视频 | a片在线免费观看 | 精品国产福利一区二区 | 欧美老妇与禽交 | 亚洲男人av天堂午夜在 | 夫妻免费无码v看片 | 亚洲日本在线电影 | 中文字幕无码视频专区 | 黑人大群体交免费视频 | 最新国产麻豆aⅴ精品无码 | av小次郎收藏 | 日本爽爽爽爽爽爽在线观看免 | 精品无码国产一区二区三区av | 久久久精品456亚洲影院 | 中文字幕无码免费久久9一区9 | 正在播放老肥熟妇露脸 | 日本www一道久久久免费榴莲 | 亚洲伊人久久精品影院 | 亚洲国产精品一区二区美利坚 | 黑人大群体交免费视频 | 成人综合网亚洲伊人 | 美女扒开屁股让男人桶 | 99久久99久久免费精品蜜桃 | 初尝人妻少妇中文字幕 | 少妇无码av无码专区在线观看 | 领导边摸边吃奶边做爽在线观看 | 国产无套粉嫩白浆在线 | 日本爽爽爽爽爽爽在线观看免 | 国产97人人超碰caoprom | 国内精品久久毛片一区二区 | 无码人妻精品一区二区三区下载 | 国产精品资源一区二区 | 国产农村妇女高潮大叫 | 国产精品高潮呻吟av久久 | 免费观看激色视频网站 | 女人被男人爽到呻吟的视频 | 男女超爽视频免费播放 | 婷婷综合久久中文字幕蜜桃三电影 | 国产精品99爱免费视频 | 久9re热视频这里只有精品 | 日韩人妻系列无码专区 | 亚洲欧美综合区丁香五月小说 | 中文字幕无码人妻少妇免费 | 呦交小u女精品视频 | 玩弄中年熟妇正在播放 | 亚洲中文字幕无码一久久区 | 日韩亚洲欧美精品综合 | 又大又黄又粗又爽的免费视频 | 久久午夜无码鲁丝片 | 蜜臀aⅴ国产精品久久久国产老师 | 无码乱肉视频免费大全合集 | 97夜夜澡人人双人人人喊 | 欧美野外疯狂做受xxxx高潮 | 超碰97人人做人人爱少妇 | 无码帝国www无码专区色综合 | 亚洲熟妇色xxxxx欧美老妇y | 国产精品久久国产三级国 | 日韩欧美中文字幕在线三区 | 国产性生大片免费观看性 | 国产亚洲精品精品国产亚洲综合 | 77777熟女视频在线观看 а天堂中文在线官网 | 亚洲国产精品无码一区二区三区 | 伊人久久婷婷五月综合97色 | 亚洲成av人片在线观看无码不卡 | 亚洲色成人中文字幕网站 | 午夜精品一区二区三区的区别 | 中文久久乱码一区二区 | 人人爽人人澡人人高潮 | 男女性色大片免费网站 | 国产精品人人爽人人做我的可爱 | 97精品国产97久久久久久免费 | 乱人伦中文视频在线观看 | 55夜色66夜色国产精品视频 | 四十如虎的丰满熟妇啪啪 | 中文字幕日产无线码一区 | 国产成人一区二区三区别 | 精品一区二区不卡无码av | 日日天干夜夜狠狠爱 | 美女张开腿让人桶 | 亚洲日韩中文字幕在线播放 | 日日摸日日碰夜夜爽av | 久久久精品国产sm最大网站 | 九九在线中文字幕无码 | 桃花色综合影院 | 久久国产精品偷任你爽任你 | 中文字幕人妻无码一区二区三区 | 久久伊人色av天堂九九小黄鸭 | 无码成人精品区在线观看 | 成人无码精品1区2区3区免费看 | 超碰97人人做人人爱少妇 | 国产精品久免费的黄网站 | 夫妻免费无码v看片 | 精品国产成人一区二区三区 | 狠狠色丁香久久婷婷综合五月 | 成人免费视频在线观看 | 欧美国产日产一区二区 | 午夜熟女插插xx免费视频 | 国产97人人超碰caoprom | 亚洲中文字幕av在天堂 | 丰满人妻精品国产99aⅴ | 粗大的内捧猛烈进出视频 | 久久久久国色av免费观看性色 | 欧美精品无码一区二区三区 | 精品欧洲av无码一区二区三区 | 无码av中文字幕免费放 | 内射白嫩少妇超碰 | 亚洲一区二区三区偷拍女厕 | 亚洲综合精品香蕉久久网 | 天下第一社区视频www日本 | 亚洲一区二区三区国产精华液 | 久久久精品欧美一区二区免费 | 性生交大片免费看l | 国产亚洲人成在线播放 | 丰腴饱满的极品熟妇 | 装睡被陌生人摸出水好爽 | 丰满少妇熟乱xxxxx视频 | 在线观看国产午夜福利片 | 亚洲熟妇色xxxxx欧美老妇y | 狠狠色丁香久久婷婷综合五月 | 国产手机在线αⅴ片无码观看 | 欧美性猛交内射兽交老熟妇 | 久久国内精品自在自线 | 国产成人无码av在线影院 | 国产av人人夜夜澡人人爽麻豆 | a国产一区二区免费入口 | 丰满少妇弄高潮了www | 人人超人人超碰超国产 | 欧美国产日产一区二区 | 99久久久国产精品无码免费 | 国产又粗又硬又大爽黄老大爷视 | 亚洲精品久久久久avwww潮水 | 国产激情艳情在线看视频 | 午夜精品久久久内射近拍高清 | 亚洲精品鲁一鲁一区二区三区 | 激情人妻另类人妻伦 | 一本久道久久综合婷婷五月 | 免费人成在线视频无码 | 亚洲精品综合一区二区三区在线 | 一本一道久久综合久久 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 国产人妖乱国产精品人妖 | 在线成人www免费观看视频 | 国产精品第一区揄拍无码 | 国产成人亚洲综合无码 | 无码人妻丰满熟妇区五十路百度 | 国产人成高清在线视频99最全资源 | 国产成人无码一二三区视频 | 亚洲人成影院在线无码按摩店 | 丝袜人妻一区二区三区 | 一本色道久久综合亚洲精品不卡 | 高清不卡一区二区三区 | 荡女精品导航 | 亚洲无人区午夜福利码高清完整版 | 亚洲一区二区三区播放 | 亚洲a无码综合a国产av中文 | 无码成人精品区在线观看 | 波多野42部无码喷潮在线 | 国产成人无码午夜视频在线观看 | 丰满人妻一区二区三区免费视频 | 成人综合网亚洲伊人 | 欧美35页视频在线观看 | 中文字幕无码人妻少妇免费 | 色五月五月丁香亚洲综合网 | 免费乱码人妻系列无码专区 | 国产人妻久久精品二区三区老狼 | 激情五月综合色婷婷一区二区 | 中文字幕+乱码+中文字幕一区 | 无码播放一区二区三区 | 亚洲日韩av片在线观看 | 久久精品国产精品国产精品污 | 曰本女人与公拘交酡免费视频 | 欧美高清在线精品一区 | 亚洲国产精品无码一区二区三区 | 四十如虎的丰满熟妇啪啪 | 日日摸天天摸爽爽狠狠97 | 一区二区三区乱码在线 | 欧洲 | 国产精品怡红院永久免费 | 午夜福利试看120秒体验区 | 99久久精品午夜一区二区 | 国产激情无码一区二区 | 国产无遮挡吃胸膜奶免费看 | 中文字幕无线码免费人妻 | 久久国产精品精品国产色婷婷 | 久久国语露脸国产精品电影 | 国产午夜亚洲精品不卡 |