3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

今日arXiv精选 | ICCV 2021/CIKM 2021/ACM MM 2021

發布時間:2024/10/8 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 今日arXiv精选 | ICCV 2021/CIKM 2021/ACM MM 2021 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?關于?#今日arXiv精選?

這是「AI 學術前沿」旗下的一檔欄目,編輯將每日從arXiv中精選高質量論文,推送給讀者。

SUNet: Symmetric Undistortion Network for Rolling Shutter Correction

發表會議: ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04775

摘要

The vast majority of modern consumer-grade cameras employ a rolling shutter mechanism, leading to image distortions if the camera moves during image acquisition. In this paper, we present a novel deep network to solve the generic rolling shutter correction problem with two consecutive frames. Our pipeline is symmetrically designed to predict the global shutter image corresponding to the intermediate time of these two frames, which is difficult for existing methods because it corresponds to a camera pose that differs most from the two frames. First, two time-symmetric dense undistortion flows are estimated by using well-established principles: pyramidal construction, warping, and cost volume processing. Then, both rolling shutter images are warped into a common global shutter one in the feature space, respectively. Finally, a symmetric consistency constraint is constructed in the image decoder to effectively aggregate the contextual cues of two rolling shutter images, thereby recovering the high-quality global shutter image. Extensive experiments with both synthetic and real data from public benchmarks demonstrate the superiority of our proposed approach over the state-of-the-art methods.

Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds

發表會議:?ICCV 2021

論文地址: https://arxiv.org/abs/2108.04728

摘要

Current 3D single object tracking approaches track the target based on a feature comparison between the target template and the search area. However, due to the common occlusion in LiDAR scans, it is non-trivial to conduct accurate feature comparisons on severe sparse and incomplete shapes. In this work, we exploit the ground truth bounding box given in the first frame as a strong cue to enhance the feature description of the target object, enabling a more accurate feature comparison in a simple yet effective way. In particular, we first propose the BoxCloud, an informative and robust representation, to depict an object using the point-to-box relation. We further design an efficient box-aware feature fusion module, which leverages the aforementioned BoxCloud for reliable feature matching and embedding. Integrating the proposed general components into an existing model P2B, we construct a superior box-aware tracker (BAT). Experiments confirm that our proposed BAT outperforms the previous state-of-the-art by a large margin on both KITTI and NuScenes benchmarks, achieving a 12.8% improvement in terms of precision while running ~20% faster.

Multi-Camera Trajectory Forecasting with Trajectory Tensors

發表期刊: TPAMI

論文地址:?https://arxiv.org/abs/2108.04694

摘要

We introduce the problem of multi-camera trajectory forecasting (MCTF), which involves predicting the trajectory of a moving object across a network of cameras. While multi-camera setups are widespread for applications such as surveillance and traffic monitoring, existing trajectory forecasting methods typically focus on single-camera trajectory forecasting (SCTF), limiting their use for such applications. Furthermore, using a single camera limits the field-of-view available, making long-term trajectory forecasting impossible. We address these shortcomings of SCTF by developing an MCTF framework that simultaneously uses all estimated relative object locations from several viewpoints and predicts the object's future location in all possible viewpoints. Our framework follows a Which-When-Where approach that predicts in which camera(s) the objects appear and when and where within the camera views they appear. To this end, we propose the concept of trajectory tensors: a new technique to encode trajectories across multiple camera views and the associated uncertainties. We develop several encoder-decoder MCTF models for trajectory tensors and present extensive experiments on our own database (comprising 600 hours of video data from 15 camera views) created particularly for the MCTF task. Results show that our trajectory tensor models outperform coordinate trajectory-based MCTF models and existing SCTF methods adapted for MCTF.?

FoodLogoDet-1500: A Dataset for Large-Scale Food Logo Detection via Multi-Scale Feature Decoupling Network

發表會議: ACM MM 2021

論文地址:?https://arxiv.org/abs/2108.04644

摘要

Food logo detection plays an important role in the multimedia for its wide real-world applications, such as food recommendation of the self-service shop and infringement detection on e-commerce platforms. A large-scale food logo dataset is urgently needed for developing advanced food logo detection algorithms. However, there are no available food logo datasets with food brand information. To support efforts towards food logo detection, we introduce the dataset FoodLogoDet-1500, a new large-scale publicly available food logo dataset, which has 1,500 categories, about 100,000 images and about 150,000 manually annotated food logo objects. We describe the collection and annotation process of FoodLogoDet-1500, analyze its scale and diversity, and compare it with other logo datasets. To the best of our knowledge, FoodLogoDet-1500 is the first largest publicly available high-quality dataset for food logo detection. The challenge of food logo detection lies in the large-scale categories and similarities between food logo categories. For that, we propose a novel food logo detection method Multi-scale Feature Decoupling Network (MFDNet), which decouples classification and regression into two branches and focuses on the classification branch to solve the problem of distinguishing multiple food logo categories. Specifically, we introduce the feature offset module, which utilizes the deformation-learning for optimal classification offset and can effectively obtain the most representative features of classification in detection. In addition, we adopt a balanced feature pyramid in MFDNet, which pays attention to global information, balances the multi-scale feature maps, and enhances feature extraction capability. Comprehensive experiments on FoodLogoDet-1500 and other two benchmark logo datasets demonstrate the effectiveness of the proposed method.?

Learning Canonical 3D Object Representation for Fine-Grained Recognition

發表會議:?ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04628

摘要

We propose a novel framework for fine-grained object recognition that learns to recover object variation in 3D space from a single image, trained on an image collection without using any ground-truth 3D annotation. We accomplish this by representing an object as a composition of 3D shape and its appearance, while eliminating the effect of camera viewpoint, in a canonical configuration. Unlike conventional methods modeling spatial variation in 2D images only, our method is capable of reconfiguring the appearance feature in a canonical 3D space, thus enabling the subsequent object classifier to be invariant under 3D geometric variation. Our representation also allows us to go beyond existing methods, by incorporating 3D shape variation as an additional cue for object recognition. To learn the model without ground-truth 3D annotation, we deploy a differentiable renderer in an analysis-by-synthesis framework. By incorporating 3D shape and appearance jointly in a deep representation, our method learns the discriminative representation of the object and achieves competitive performance on fine-grained image recognition and vehicle re-identification. We also demonstrate that the performance of 3D shape reconstruction is improved by learning fine-grained shape deformation in a boosting manner.

Relation-aware Compositional Zero-shot Learning for Attribute-Object Pair Recognition

發表期刊:?IEEE Transactions on Multimedia

論文地址:?https://arxiv.org/abs/2108.04603

摘要

This paper proposes a novel model for recognizing images with composite attribute-object concepts, notably for composite concepts that are unseen during model training. We aim to explore the three key properties required by the task --- relation-aware, consistent, and decoupled --- to learn rich and robust features for primitive concepts that compose attribute-object pairs. To this end, we propose the Blocked Message Passing Network (BMP-Net). The model consists of two modules. The concept module generates semantically meaningful features for primitive concepts, whereas the visual module extracts visual features for attributes and objects from input images. A message passing mechanism is used in the concept module to capture the relations between primitive concepts. Furthermore, to prevent the model from being biased towards seen composite concepts and reduce the entanglement between attributes and objects, we propose a blocking mechanism that equalizes the information available to the model for both seen and unseen concepts. Extensive experiments and ablation studies on two benchmarks show the efficacy of the proposed model.

Deep Metric Learning for Open World Semantic Segmentation

發表會議: ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04562

摘要

Classical close-set semantic segmentation networks have limited ability to detect out-of-distribution (OOD) objects, which is important for safety-critical applications such as autonomous driving. Incrementally learning these OOD objects with few annotations is an ideal way to enlarge the knowledge base of the deep learning models. In this paper, we propose an open world semantic segmentation system that includes two modules: (1) an open-set semantic segmentation module to detect both in-distribution and OOD objects. (2) an incremental few-shot learning module to gradually incorporate those OOD objects into its existing knowledge base. This open world semantic segmentation system behaves like a human being, which is able to identify OOD objects and gradually learn them with corresponding supervision. We adopt the Deep Metric Learning Network (DMLNet) with contrastive clustering to implement open-set semantic segmentation. Compared to other open-set semantic segmentation methods, our DMLNet achieves state-of-the-art performance on three challenging open-set semantic segmentation datasets without using additional data or generative models. On this basis, two incremental few-shot learning methods are further proposed to progressively improve the DMLNet with the annotations of OOD objects.

Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based Action Recognition

發表會議:?ACM MM 2021

論文地址:?https://arxiv.org/abs/2108.04536

摘要

The task of skeleton-based action recognition remains a core challenge in human-centred scene understanding due to the multiple granularities and large variation in human motion. Existing approaches typically employ a single neural representation for different motion patterns, which has difficulty in capturing fine-grained action classes given limited training data. To address the aforementioned problems, we propose a novel multi-granular spatio-temporal graph network for skeleton-based action classification that jointly models the coarse- and fine-grained skeleton motion patterns. To this end, we develop a dual-head graph network consisting of two interleaved branches, which enables us to extract features at two spatio-temporal resolutions in an effective and efficient manner. Moreover, our network utilises a cross-head communication strategy to mutually enhance the representations of both heads. We conducted extensive experiments on three large-scale datasets, namely NTU RGB+D 60, NTU RGB+D 120, and Kinetics-Skeleton, and achieves the state-of-the-art performance on all the benchmarks, which validates the effectiveness of our method.

ASMR: Learning Attribute-Based Person Search with Adaptive Semantic Margin Regularizer

發表會議: ICCV 2021

論文地址: https://arxiv.org/abs/2108.04533

摘要

Attribute-based person search is the task of finding person images that are best matched with a set of text attributes given as query. The main challenge of this task is the large modality gap between attributes and images. To reduce the gap, we present a new loss for learning cross-modal embeddings in the context of attribute-based person search. We regard a set of attributes as a category of people sharing the same traits. In a joint embedding space of the two modalities, our loss pulls images close to their person categories for modality alignment. More importantly, it pushes apart a pair of person categories by a margin determined adaptively by their semantic distance, where the distance metric is learned end-to-end so that the loss considers importance of each attribute when relating person categories. Our loss guided by the adaptive semantic margin leads to more discriminative and semantically well-arranged distributions of person images. As a consequence, it enables a simple embedding model to achieve state-of-the-art records on public benchmarks without bells and whistles.

SP-GAN: Sphere-Guided 3D Shape Generation and Manipulation

發表會議:??SIGGRAPH 2021

論文地址:?https://arxiv.org/abs/2108.04476

摘要

We present SP-GAN, a new unsupervised sphere-guided generative model for direct synthesis of 3D shapes in the form of point clouds. Compared with existing models, SP-GAN is able to synthesize diverse and high-quality shapes with fine details and promote controllability for part-aware shape generation and manipulation, yet trainable without any parts annotations. In SP-GAN, we incorporate a global prior (uniform points on a sphere) to spatially guide the generative process and attach a local prior (a random latent code) to each sphere point to provide local details. The key insight in our design is to disentangle the complex 3D shape generation task into a global shape modeling and a local structure adjustment, to ease the learning process and enhance the shape generation quality. Also, our model forms an implicit dense correspondence between the sphere points and points in every generated shape, enabling various forms of structure-aware shape manipulations such as part editing, part-wise shape interpolation, and multi-shape part composition, etc., beyond the existing generative models. Experimental results, which include both visual and quantitative evaluations, demonstrate that our model is able to synthesize diverse point clouds with fine details and less noise, as compared with the state-of-the-art models.

Reference-based Defect Detection Network

發表期刊: IEEE Transactions on Image Processing

論文地址:?https://arxiv.org/abs/2108.04456

摘要

The defect detection task can be regarded as a realistic scenario of object detection in the computer vision field and it is widely used in the industrial field. Directly applying vanilla object detector to defect detection task can achieve promising results, while there still exists challenging issues that have not been solved. The first issue is the texture shift which means a trained defect detector model will be easily affected by unseen texture, and the second issue is partial visual confusion which indicates that a partial defect box is visually similar with a complete box. To tackle these two problems, we propose a Reference-based Defect Detection Network (RDDN). Specifically, we introduce template reference and context reference to against those two problems, respectively. Template reference can reduce the texture shift from image, feature or region levels, and encourage the detectors to focus more on the defective area as a result. We can use either well-aligned template images or the outputs of a pseudo template generator as template references in this work, and they are jointly trained with detectors by the supervision of normal samples. To solve the partial visual confusion issue, we propose to leverage the carried context information of context reference, which is the concentric bigger box of each region proposal, to perform more accurate region classification and regression. Experiments on two defect detection datasets demonstrate the effectiveness of our proposed approach.

SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

發表會議:?ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04444

摘要

Point cloud completion aims to predict a complete shape in high accuracy from its partial observation. However, previous methods usually suffered from discrete nature of point cloud and unstructured prediction of points in local regions, which makes it hard to reveal fine local geometric details on the complete shape. To resolve this issue, we propose SnowflakeNet with Snowflake Point Deconvolution (SPD) to generate the complete point clouds. The SnowflakeNet models the generation of complete point clouds as the snowflake-like growth of points in 3D space, where the child points are progressively generated by splitting their parent points after each SPD. Our insight of revealing detailed geometry is to introduce skip-transformer in SPD to learn point splitting patterns which can fit local regions the best. Skip-transformer leverages attention mechanism to summarize the splitting patterns used in the previous SPD layer to produce the splitting in the current SPD layer. The locally compact and structured point cloud generated by SPD is able to precisely capture the structure characteristic of 3D shape in local patches, which enables the network to predict highly detailed geometries, such as smooth regions, sharp edges and corners. Our experimental results outperform the state-of-the-art point cloud completion methods under widely used benchmarks.

Domain-Aware Universal Style Transfer

發表會議:?ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04441

摘要

Style transfer aims to reproduce content images with the styles from reference images. Existing universal style transfer methods successfully deliver arbitrary styles to original images either in an artistic or a photo-realistic way. However, the range of 'arbitrary style' defined by existing works is bounded in the particular domain due to their structural limitation. Specifically, the degrees of content preservation and stylization are established according to a predefined target domain. As a result, both photo-realistic and artistic models have difficulty in performing the desired style transfer for the other domain. To overcome this limitation, we propose a unified architecture, Domain-aware Style Transfer Networks (DSTN) that transfer not only the style but also the property of domain (i.e., domainness) from a given reference image. To this end, we design a novel domainness indicator that captures the domainness value from the texture and structural features of reference images. Moreover, we introduce a unified framework with domain-aware skip connection to adaptively transfer the stroke and palette to the input contents guided by the domainness indicator. Our extensive experiments validate that our model produces better qualitative results and outperforms previous methods in terms of proxy metrics on both artistic and photo-realistic stylizations.

VirtualConductor: Music-driven Conducting Video Generation System

發表會議:?ICME 2021

論文地址:?https://arxiv.org/abs/2108.04350

摘要

In this demo, we present VirtualConductor, a system that can generate conducting video from any given music and a single user's image. First, a large-scale conductor motion dataset is collected and constructed. Then, we propose Audio Motion Correspondence Network (AMCNet) and adversarial-perceptual learning to learn the cross-modal relationship and generate diverse, plausible, music-synchronized motion. Finally, we combine 3D animation rendering and a pose transfer model to synthesize conducting video from a single given user's image. Therefore, any user can become a virtual conductor through the system.

A Survey of Machine Learning Techniques for Detecting and Diagnosing COVID-19 from Imaging

論文地址:?https://arxiv.org/abs/2108.04344

摘要

Due to the limited availability and high cost of the reverse transcription-polymerase chain reaction (RT-PCR) test, many studies have proposed machine learning techniques for detecting COVID-19 from medical imaging. The purpose of this study is to systematically review, assess, and synthesize research articles that have used different machine learning techniques to detect and diagnose COVID-19 from chest X-ray and CT scan images. A structured literature search was conducted in the relevant bibliographic databases to ensure that the survey solely centered on reproducible and high-quality research. We selected papers based on our inclusion criteria. In this survey, we reviewed?98?articles that fulfilled our inclusion criteria. We have surveyed a complete pipeline of chest imaging analysis techniques related to COVID-19, including data collection, pre-processing, feature extraction, classification, and visualization. We have considered CT scans and X-rays as both are widely used to describe the latest developments in medical imaging to detect COVID-19. This survey provides researchers with valuable insights into different machine learning techniques and their performance in the detection and diagnosis of COVID-19 from chest imaging. At the end, the challenges and limitations in detecting COVID-19 using machine learning techniques and the future direction of research are discussed.

Learning to Cut by Watching Movies

發表會議: ICCV 2021

論文地址:?https://arxiv.org/abs/2108.04294

摘要

Video content creation keeps growing at an incredible pace; yet, creating engaging stories remains challenging and requires non-trivial video editing expertise. Many video editing components are astonishingly hard to automate primarily due to the lack of raw video materials. This paper focuses on a new task for computational video editing, namely the task of raking cut plausibility. Our key idea is to leverage content that has already been edited to learn fine-grained audiovisual patterns that trigger cuts. To do this, we first collected a data source of more than 10K videos, from which we extract more than 255K cuts. We devise a model that learns to discriminate between real and artificial cuts via contrastive learning. We set up a new task and a set of baselines to benchmark video cut generation. We observe that our proposed model outperforms the baselines by large margins. To demonstrate our model in real-world applications, we conduct human studies in a collection of unedited videos. The results show that our model does a better job at cutting than random and alternative baselines.

TrUMAn: Trope Understanding in Movies and Animations

發表會議:?CIKM? 2021

論文地址:?https://arxiv.org/abs/2108.04542

摘要

Understanding and comprehending video content is crucial for many real-world applications such as search and recommendation systems. While recent progress of deep learning has boosted performance on various tasks using visual cues, deep cognition to reason intentions, motivation, or causality remains challenging. Existing datasets that aim to examine video reasoning capability focus on visual signals such as actions, objects, relations, or could be answered utilizing text bias. Observing this, we propose a novel task, along with a new dataset: Trope Understanding in Movies and Animations (TrUMAn), intending to evaluate and develop learning systems beyond visual signals. Tropes are frequently used storytelling devices for creative works. By coping with the trope understanding task and enabling the deep cognition skills of machines, we are optimistic that data mining applications and algorithms could be taken to the next level. To tackle the challenging TrUMAn dataset, we present a Trope Understanding and Storytelling (TrUSt) with a new Conceptual Storyteller module, which guides the video encoder by performing video storytelling on a latent space. The generated story embedding is then fed into the trope understanding model to provide further signals. Experimental results demonstrate that state-of-the-art learning systems on existing tasks reach only 12.01% of accuracy with raw input signals. Also, even in the oracle case with human-annotated descriptions, BERT contextual embedding achieves at most 28% of accuracy. Our proposed TrUSt boosts the model performance and reaches 13.94% performance. We also provide detailed analysis topave the way for future research. TrUMAn is publicly available at:this https URL

Rethinking Architecture Selection in Differentiable NAS

發表會議:?Outstanding Paper Award at ICLR 2021

論文地址:?https://arxiv.org/abs/2108.04392

代碼地址:?https://github.com/ruocwang/darts-pt

摘要

Differentiable Neural Architecture Search is one of the most popular Neural Architecture Search (NAS) methods for its search efficiency and simplicity, accomplished by jointly optimizing the model weight and architecture parameters in a weight-sharing supernet via gradient-based algorithms. At the end of the search phase, the operations with the largest architecture parameters will be selected to form the final architecture, with the implicit assumption that the values of architecture parameters reflect the operation strength. While much has been discussed about the supernet's optimization, the architecture selection process has received little attention. We provide empirical and theoretical analysis to show that the magnitude of architecture parameters does not necessarily indicate how much the operation contributes to the supernet's performance. We propose an alternative perturbation-based architecture selection that directly measures each operation's influence on the supernet. We re-evaluate several differentiable NAS methods with the proposed architecture selection and find that it is able to extract significantly improved architectures from the underlying supernets consistently. Furthermore, we find that several failure modes of DARTS can be greatly alleviated with the proposed selection method, indicating that much of the poor generalization observed in DARTS can be attributed to the failure of magnitude-based architecture selection rather than entirely the optimization of its supernet.

Label-informed Graph Structure Learning for Node Classification

發表會議:?CIKM?2021 short paper

論文地址:?https://arxiv.org/abs/2108.04595

摘要

Graph Neural Networks (GNNs) have achieved great success among various domains. Nevertheless, most GNN methods are sensitive to the quality of graph structures. To tackle this problem, some studies exploit different graph structure learning strategies to refine the original graph structure. However, these methods only consider feature information while ignoring available label information. In this paper, we propose a novel label-informed graph structure learning framework which incorporates label information explicitly through a class transition matrix. We conduct extensive experiments on seven node classification benchmark datasets and the results show that our method outperforms or matches the state-of-the-art baselines.

A Survey on Deep Reinforcement Learning for Data Processing and Analytics

論文地址:?https://arxiv.org/abs/2108.04526

摘要

Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing deep reinforcement learning to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in deep reinforcement learning. Next, we discuss deep reinforcement learning deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of deep reinforcement learning in data processing and analytics, ranging from data preparation, natural language interface to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using deep reinforcement learning in data processing and analytics.

AdaRNN: Adaptive Learning and Forecasting of Time Series

發表會議:CIKM 2021

論文地址:https://arxiv.org/abs/2108.04443

代碼地址:?

https://github.com/jindongwang/transferlearning/tree/master/code/deep/adarnn

摘要

Time series has wide applications in the real world and is known to be difficult to forecast. Since its statistical properties change over time, its distribution also changes temporally, which will cause severe distribution shift problem to existing methods. However, it remains unexplored to model the time series in the distribution perspective. In this paper, we term this as Temporal Covariate Shift (TCS). This paper proposes Adaptive RNNs (AdaRNN) to tackle the TCS problem by building an adaptive model that generalizes well on the unseen test data. AdaRNN is sequentially composed of two novel algorithms. First, we propose Temporal Distribution Characterization to better characterize the distribution information in the TS. Second, we propose Temporal Distribution Matching to reduce the distribution mismatch in TS to learn the adaptive TS model. AdaRNN is a general framework with flexible distribution distances integrated. Experiments on human activity recognition, air quality prediction, and financial analysis show that AdaRNN outperforms the latest methods by a classification accuracy of 2.6% and significantly reduces the RMSE by 9.0%. We also show that the temporal distribution matching algorithm can be extended in Transformer structure to boost its performance.

Continual Learning for Grounded Instruction Generation by Observing Human Following Behavior

發表期刊: TACL

論文地址:?https://arxiv.org/abs/2108.04812

摘要

We study continual learning for natural language instruction generation, by observing human users' instruction execution. We focus on a collaborative scenario, where the system both acts and delegates tasks to human users using natural language. We compare user execution of generated instructions to the original system intent as an indication to the system's success communicating its intent. We show how to use this signal to improve the system's ability to generate instructions via contextual bandit learning. In interaction with real users, our system demonstrates dramatic improvements in its ability to generate language over time.

Multi-Factors Aware Dual-Attentional Knowledge Tracing

發表會議: CIKM 2021

論文地址:?https://arxiv.org/abs/2108.04741

摘要

With the increasing demands of personalized learning, knowledge tracing has become important which traces students' knowledge states based on their historical practices. Factor analysis methods mainly use two kinds of factors which are separately related to students and questions to model students' knowledge states. These methods use the total number of attempts of students to model students' learning progress and hardly highlight the impact of the most recent relevant practices. Besides, current factor analysis methods ignore rich information contained in questions. In this paper, we propose Multi-Factors Aware Dual-Attentional model (MF-DAKT) which enriches question representations and utilizes multiple factors to model students' learning progress based on a dual-attentional mechanism. More specifically, we propose a novel student-related factor which records the most recent attempts on relevant concepts of students to highlight the impact of recent exercises. To enrich questions representations, we use a pre-training method to incorporate two kinds of question information including questions' relation and difficulty level. We also add a regularization term about questions' difficulty level to restrict pre-trained question representations to fine-tuning during the process of predicting students' performance. Moreover, we apply a dual-attentional mechanism to differentiate contributions of factors and factor interactions to final prediction in different practice records. At last, we conduct experiments on several real-world datasets and results show that MF-DAKT can outperform existing knowledge tracing methods. We also conduct several studies to validate the effects of each component of MF-DAKT.

Hierarchical Latent Relation Modeling for Collaborative Metric Learning

發表會議:??ACM RecSys 2021

論文地址:?https://arxiv.org/abs/2108.04655

摘要

Collaborative Metric Learning (CML) recently emerged as a powerful paradigm for recommendation based on implicit feedback collaborative filtering. However, standard CML methods learn fixed user and item representations, which fails to capture the complex interests of users. Existing extensions of CML also either ignore the heterogeneity of user-item relations, i.e. that a user can simultaneously like very different items, or the latent item-item relations, i.e. that a user's preference for an item depends, not only on its intrinsic characteristics, but also on items they previously interacted with. In this paper, we present a hierarchical CML model that jointly captures latent user-item and item-item relations from implicit data. Our approach is inspired by translation mechanisms from knowledge graph embedding and leverages memory-based attention networks. We empirically show the relevance of this joint relational modeling, by outperforming existing CML models on recommendation tasks on several real-world datasets. Our experiments also emphasize the limits of current CML relational models on very sparse datasets.

Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based Action Recognition

發表會議:??ACM MM 2021

論文地址:?https://arxiv.org/abs/2108.04536

摘要

The task of skeleton-based action recognition remains a core challenge in human-centred scene understanding due to the multiple granularities and large variation in human motion. Existing approaches typically employ a single neural representation for different motion patterns, which has difficulty in capturing fine-grained action classes given limited training data. To address the aforementioned problems, we propose a novel multi-granular spatio-temporal graph network for skeleton-based action classification that jointly models the coarse- and fine-grained skeleton motion patterns. To this end, we develop a dual-head graph network consisting of two interleaved branches, which enables us to extract features at two spatio-temporal resolutions in an effective and efficient manner. Moreover, our network utilises a cross-head communication strategy to mutually enhance the representations of both heads. We conducted extensive experiments on three large-scale datasets, namely NTU RGB+D 60, NTU RGB+D 120, and Kinetics-Skeleton, and achieves the state-of-the-art performance on all the benchmarks, which validates the effectiveness of our method.

Enhancing Knowledge Tracing via Adversarial Training

發表會議:?ACM MM 2021

論文地址:?https://arxiv.org/abs/2108.04430

摘要

We study the problem of knowledge tracing (KT) where the goal is to trace the students' knowledge mastery over time so as to make predictions on their future performance. Owing to the good representation capacity of deep neural networks (DNNs), recent advances on KT have increasingly concentrated on exploring DNNs to improve the performance of KT. However, we empirically reveal that the DNNs based KT models may run the risk of overfitting, especially on small datasets, leading to limited generalization. In this paper, by leveraging the current advances in adversarial training (AT), we propose an efficient AT based KT method (ATKT) to enhance KT model's generalization and thus push the limit of KT. Specifically, we first construct adversarial perturbations and add them on the original interaction embeddings as adversarial examples. The original and adversarial examples are further used to jointly train the KT model, forcing it is not only to be robust to the adversarial examples, but also to enhance the generalization over the original ones. To better implement AT, we then present an efficient attentive-LSTM model as KT backbone, where the key is a proposed knowledge hidden state attention module that adaptively aggregates information from previous knowledge hidden states while simultaneously highlighting the importance of current knowledge hidden state to make a more accurate prediction. Extensive experiments on four public benchmark datasets demonstrate that our ATKT achieves new state-of-the-art performance. Code is available at: \color{blue} {\url{this https URL}}.

How Commonsense Knowledge Helps with Natural Language Tasks: A Survey of Recent Resources and Methodologies

論文地址: https://arxiv.org/abs/2108.04674

摘要

In this paper, we give an overview of commonsense reasoning in natural language processing, which requires a deeper understanding of the contexts and usually involves inference over implicit external knowledge. We first review some popular commonsense knowledge bases and commonsense reasoning benchmarks, but give more emphasis on the methodologies, including recent approaches that aim at solving some general natural language problems that take advantage of external knowledge bases. Finally, we discuss some future directions in pushing the boundary of commonsense reasoning in natural language processing.

FairyTailor: A Multimodal Generative Framework for Storytelling

論文地址:?https://arxiv.org/abs/2108.04324

項目地址: https://github.com/EdenBD/MultiModalStory-demo

演示地址:?https://fairytailor.org/

摘要

Storytelling is an open-ended task that entails creative thinking and requires a constant flow of ideas. Natural language generation (NLG) for storytelling is especially challenging because it requires the generated text to follow an overall theme while remaining creative and diverse to engage the reader. In this work, we introduce a system and a web-based demo, FairyTailor, for human-in-the-loop visual story co-creation. Users can create a cohesive children's fairytale by weaving generated texts and retrieved images with their input. FairyTailor adds another modality and modifies the text generation process to produce a coherent and creative sequence of text and images. To our knowledge, this is the first dynamic tool for multimodal story generation that allows interactive co-formation of both texts and images. It allows users to give feedback on co-created stories and share their results.

·

總結

以上是生活随笔為你收集整理的今日arXiv精选 | ICCV 2021/CIKM 2021/ACM MM 2021的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

东京热一精品无码av | 女人被男人爽到呻吟的视频 | 亚洲色大成网站www国产 | 免费国产成人高清在线观看网站 | 国产综合久久久久鬼色 | 无码免费一区二区三区 | 日韩少妇白浆无码系列 | 三上悠亚人妻中文字幕在线 | 国产疯狂伦交大片 | 欧美黑人性暴力猛交喷水 | 少妇人妻偷人精品无码视频 | 狠狠色丁香久久婷婷综合五月 | 亚洲综合在线一区二区三区 | 国产精品永久免费视频 | 亚洲人亚洲人成电影网站色 | 色婷婷综合激情综在线播放 | 内射欧美老妇wbb | 正在播放东北夫妻内射 | 日本丰满护士爆乳xxxx | 精品aⅴ一区二区三区 | 高潮毛片无遮挡高清免费视频 | 图片小说视频一区二区 | 精品人妻中文字幕有码在线 | 在线观看国产一区二区三区 | 亚洲精品无码人妻无码 | 色窝窝无码一区二区三区色欲 | 麻豆精品国产精华精华液好用吗 | 精品夜夜澡人妻无码av蜜桃 | 一本色道久久综合亚洲精品不卡 | 免费人成在线观看网站 | 国产综合色产在线精品 | 成人片黄网站色大片免费观看 | 免费看男女做好爽好硬视频 | 国产精品久久精品三级 | 日本一区二区更新不卡 | 国产av久久久久精东av | 国产明星裸体无码xxxx视频 | 久久精品中文字幕一区 | 波多野结衣一区二区三区av免费 | 亚洲狠狠婷婷综合久久 | 国产舌乚八伦偷品w中 | 在线欧美精品一区二区三区 | 亚洲经典千人经典日产 | 国产精品无套呻吟在线 | 欧美国产日韩亚洲中文 | 少妇久久久久久人妻无码 | 丝袜足控一区二区三区 | 精品久久久久久人妻无码中文字幕 | 熟妇女人妻丰满少妇中文字幕 | 欧美黑人巨大xxxxx | 日韩亚洲欧美精品综合 | 理论片87福利理论电影 | 亚洲中文字幕无码一久久区 | 老子影院午夜精品无码 | √8天堂资源地址中文在线 | 国产精品久久久久久亚洲毛片 | 日本丰满护士爆乳xxxx | 亚洲精品www久久久 | 国产人妻人伦精品 | 亚洲精品国产第一综合99久久 | 国产精品人人爽人人做我的可爱 | 久久精品成人欧美大片 | 漂亮人妻洗澡被公强 日日躁 | 亚洲爆乳无码专区 | 国产精品人人爽人人做我的可爱 | 精品人妻中文字幕有码在线 | 久久久国产一区二区三区 | 成人免费无码大片a毛片 | 少妇人妻av毛片在线看 | 国产人妻久久精品二区三区老狼 | aⅴ在线视频男人的天堂 | 国产偷国产偷精品高清尤物 | 丰满肥臀大屁股熟妇激情视频 | aⅴ亚洲 日韩 色 图网站 播放 | 久久国内精品自在自线 | 日韩在线不卡免费视频一区 | 狠狠色噜噜狠狠狠狠7777米奇 | 成熟人妻av无码专区 | 久久久www成人免费毛片 | 一本久道高清无码视频 | 亚洲自偷自拍另类第1页 | 国精品人妻无码一区二区三区蜜柚 | 国产精品理论片在线观看 | 奇米影视888欧美在线观看 | 国产精品高潮呻吟av久久 | 少妇无码av无码专区在线观看 | 国产精品久免费的黄网站 | 中国女人内谢69xxxx | 亚洲另类伦春色综合小说 | 樱花草在线社区www | 色综合久久久无码中文字幕 | 日韩精品a片一区二区三区妖精 | 丰满肥臀大屁股熟妇激情视频 | 亚洲日本va午夜在线电影 | 伊在人天堂亚洲香蕉精品区 | 亚洲人成人无码网www国产 | 精品国产一区av天美传媒 | 亚洲无人区午夜福利码高清完整版 | 国产熟妇高潮叫床视频播放 | 人妻与老人中文字幕 | 任你躁国产自任一区二区三区 | 国产在线一区二区三区四区五区 | 久久国产精品二国产精品 | 欧美日韩一区二区免费视频 | 国产在线一区二区三区四区五区 | 国产亚洲精品久久久ai换 | 99久久婷婷国产综合精品青草免费 | 亚洲国产欧美国产综合一区 | 亚洲国产一区二区三区在线观看 | 成人性做爰aaa片免费看 | 1000部啪啪未满十八勿入下载 | 国产美女精品一区二区三区 | 久久五月精品中文字幕 | 国内精品久久毛片一区二区 | 丁香花在线影院观看在线播放 | 欧美野外疯狂做受xxxx高潮 | 人人妻人人澡人人爽人人精品浪潮 | 国产两女互慰高潮视频在线观看 | 大乳丰满人妻中文字幕日本 | 亚洲国产精品美女久久久久 | 日日摸日日碰夜夜爽av | 色五月五月丁香亚洲综合网 | 久久久久久久久888 | 亚洲呦女专区 | 国产精品亚洲综合色区韩国 | 露脸叫床粗话东北少妇 | 高清无码午夜福利视频 | 国产精品久久久一区二区三区 | 精品国产麻豆免费人成网站 | 十八禁视频网站在线观看 | 亚洲一区av无码专区在线观看 | 麻豆果冻传媒2021精品传媒一区下载 | 扒开双腿疯狂进出爽爽爽视频 | 久久精品国产日本波多野结衣 | 成人欧美一区二区三区黑人 | 成人精品天堂一区二区三区 | 丁香花在线影院观看在线播放 | 亚洲精品久久久久中文第一幕 | 亚洲无人区一区二区三区 | 国产麻豆精品一区二区三区v视界 | 国产精品国产三级国产专播 | 男女下面进入的视频免费午夜 | 98国产精品综合一区二区三区 | 高清无码午夜福利视频 | 波多野42部无码喷潮在线 | 日韩欧美中文字幕在线三区 | 亚洲中文字幕无码一久久区 | 精品无人国产偷自产在线 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 国产手机在线αⅴ片无码观看 | 欧美自拍另类欧美综合图片区 | 亚洲成av人片天堂网无码】 | 亚洲一区二区三区无码久久 | 亚洲自偷自拍另类第1页 | 国产精品久久国产精品99 | 国产精品18久久久久久麻辣 | 欧美精品一区二区精品久久 | 在线亚洲高清揄拍自拍一品区 | 欧美日本免费一区二区三区 | 网友自拍区视频精品 | 野外少妇愉情中文字幕 | 亚洲s码欧洲m码国产av | 牲欲强的熟妇农村老妇女视频 | 少妇人妻av毛片在线看 | 亚洲精品国产第一综合99久久 | 蜜臀av在线观看 在线欧美精品一区二区三区 | av小次郎收藏 | 无遮挡啪啪摇乳动态图 | 中文字幕乱码人妻二区三区 | 久久久无码中文字幕久... | 老熟妇仑乱视频一区二区 | 最近免费中文字幕中文高清百度 | 夜夜高潮次次欢爽av女 | 又紧又大又爽精品一区二区 | 99久久久无码国产aaa精品 | 少妇久久久久久人妻无码 | 中文字幕av无码一区二区三区电影 | 日韩欧美群交p片內射中文 | 中文字幕日韩精品一区二区三区 | 亚洲精品欧美二区三区中文字幕 | 色欲久久久天天天综合网精品 | 给我免费的视频在线观看 | 人妻aⅴ无码一区二区三区 | 小sao货水好多真紧h无码视频 | 女人被男人躁得好爽免费视频 | 色婷婷欧美在线播放内射 | 亚洲精品午夜国产va久久成人 | 无码人妻av免费一区二区三区 | 精品无人区无码乱码毛片国产 | √8天堂资源地址中文在线 | 波多野结衣一区二区三区av免费 | 国产精品无码一区二区三区不卡 | 九九在线中文字幕无码 | 国产成人精品视频ⅴa片软件竹菊 | av人摸人人人澡人人超碰下载 | 最新国产麻豆aⅴ精品无码 | 18黄暴禁片在线观看 | 精品久久久久久亚洲精品 | 日本va欧美va欧美va精品 | 欧美成人家庭影院 | 动漫av一区二区在线观看 | 男女猛烈xx00免费视频试看 | 国产午夜视频在线观看 | 亚洲精品www久久久 | 亚洲va中文字幕无码久久不卡 | 亚洲欧美色中文字幕在线 | 国产午夜无码视频在线观看 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 在线亚洲高清揄拍自拍一品区 | 少妇的肉体aa片免费 | 又紧又大又爽精品一区二区 | 亚洲综合另类小说色区 | 无码人妻丰满熟妇区五十路百度 | 强奷人妻日本中文字幕 | 中文精品无码中文字幕无码专区 | а√天堂www在线天堂小说 | 日本精品少妇一区二区三区 | 97久久国产亚洲精品超碰热 | 无码免费一区二区三区 | 国产99久久精品一区二区 | 日欧一片内射va在线影院 | 成 人影片 免费观看 | 久久亚洲a片com人成 | 亚洲第一网站男人都懂 | 久久综合色之久久综合 | 狂野欧美性猛xxxx乱大交 | 欧美人与善在线com | 亚洲精品成a人在线观看 | 性生交片免费无码看人 | 色妞www精品免费视频 | 精品久久8x国产免费观看 | 国产美女极度色诱视频www | 亚洲色偷偷男人的天堂 | 国产三级精品三级男人的天堂 | 国产后入清纯学生妹 | 波多野结衣高清一区二区三区 | 精品亚洲成av人在线观看 | 亚洲一区二区三区国产精华液 | 又大又黄又粗又爽的免费视频 | aa片在线观看视频在线播放 | 中文字幕人妻无码一区二区三区 | 亚洲国产高清在线观看视频 | 欧美日韩色另类综合 | 老司机亚洲精品影院无码 | 日本成熟视频免费视频 | 无码帝国www无码专区色综合 | 亚洲综合无码一区二区三区 | 奇米影视7777久久精品 | 在教室伦流澡到高潮hnp视频 | 国产精品福利视频导航 | 国产成人无码a区在线观看视频app | 一本久道久久综合婷婷五月 | 成年美女黄网站色大免费视频 | www国产亚洲精品久久久日本 | 国产精品嫩草久久久久 | 久久精品国产日本波多野结衣 | 粗大的内捧猛烈进出视频 | 中文字幕人妻无码一夲道 | 国产九九九九九九九a片 | 爽爽影院免费观看 | 亚洲精品国产精品乱码不卡 | 水蜜桃亚洲一二三四在线 | 最近的中文字幕在线看视频 | 内射欧美老妇wbb | 久久天天躁狠狠躁夜夜免费观看 | 亚洲无人区一区二区三区 | 久久五月精品中文字幕 | 无码人妻出轨黑人中文字幕 | 麻豆精品国产精华精华液好用吗 | 国产精品办公室沙发 | 秋霞成人午夜鲁丝一区二区三区 | 欧美性色19p | 老熟妇仑乱视频一区二区 | 77777熟女视频在线观看 а天堂中文在线官网 | 高潮毛片无遮挡高清免费 | 亚洲男女内射在线播放 | 国产69精品久久久久app下载 | 日本饥渴人妻欲求不满 | 国产特级毛片aaaaaa高潮流水 | 国产性生交xxxxx无码 | 日本精品少妇一区二区三区 | 人人澡人人透人人爽 | 日产国产精品亚洲系列 | 人人妻人人澡人人爽人人精品 | 亚洲精品国偷拍自产在线麻豆 | 波多野结衣乳巨码无在线观看 | 久9re热视频这里只有精品 | 亚洲乱码日产精品bd | 国产人妻人伦精品1国产丝袜 | 国产亚洲美女精品久久久2020 | 欧美日韩一区二区三区自拍 | 久久精品中文字幕一区 | 免费观看黄网站 | 亚洲成av人在线观看网址 | 无遮挡国产高潮视频免费观看 | 成人综合网亚洲伊人 | 中文字幕乱码中文乱码51精品 | 国产精品久久久久久亚洲毛片 | 国产午夜手机精彩视频 | 亚欧洲精品在线视频免费观看 | 欧美成人午夜精品久久久 | 国产精品成人av在线观看 | 日日躁夜夜躁狠狠躁 | 亚洲 欧美 激情 小说 另类 | 国产精品高潮呻吟av久久 | 亚洲综合另类小说色区 | 天堂无码人妻精品一区二区三区 | 又紧又大又爽精品一区二区 | 狠狠色噜噜狠狠狠7777奇米 | 男人的天堂2018无码 | 日韩无套无码精品 | 性色欲网站人妻丰满中文久久不卡 | 国产精品香蕉在线观看 | 麻豆国产人妻欲求不满谁演的 | 国产亚洲日韩欧美另类第八页 | 乱人伦人妻中文字幕无码 | 又粗又大又硬毛片免费看 | 九九热爱视频精品 | 一区二区三区高清视频一 | 亚洲精品一区二区三区四区五区 | 午夜不卡av免费 一本久久a久久精品vr综合 | 永久免费观看美女裸体的网站 | 国产精品资源一区二区 | 丰满人妻翻云覆雨呻吟视频 | 亚洲一区二区三区 | 丰满人妻被黑人猛烈进入 | 国产一区二区三区精品视频 | 亚洲成熟女人毛毛耸耸多 | 成 人 免费观看网站 | 正在播放东北夫妻内射 | 国产av人人夜夜澡人人爽麻豆 | 丝袜人妻一区二区三区 | 激情综合激情五月俺也去 | 最近中文2019字幕第二页 | 亚洲 激情 小说 另类 欧美 | 人妻与老人中文字幕 | 成人片黄网站色大片免费观看 | 最近中文2019字幕第二页 | 天天拍夜夜添久久精品 | а√天堂www在线天堂小说 | 国产肉丝袜在线观看 | 人人澡人人透人人爽 | 香港三级日本三级妇三级 | 青青草原综合久久大伊人精品 | 精品无码一区二区三区爱欲 | av无码不卡在线观看免费 | 亚洲国产欧美日韩精品一区二区三区 | av在线亚洲欧洲日产一区二区 | 国产午夜手机精彩视频 | 国产极品美女高潮无套在线观看 | 免费国产黄网站在线观看 | 中文亚洲成a人片在线观看 | 熟女少妇在线视频播放 | 亚洲熟妇色xxxxx欧美老妇 | 无码乱肉视频免费大全合集 | 国产亚洲精品久久久久久 | 亚洲热妇无码av在线播放 | 成 人影片 免费观看 | 少妇性l交大片欧洲热妇乱xxx | 国产精品高潮呻吟av久久4虎 | 国产农村乱对白刺激视频 | 对白脏话肉麻粗话av | 国产av一区二区精品久久凹凸 | 少妇人妻av毛片在线看 | 女人被男人躁得好爽免费视频 | 少妇邻居内射在线 | 国产 精品 自在自线 | 亚洲成色www久久网站 | 97精品人妻一区二区三区香蕉 | 欧美老人巨大xxxx做受 | 亚洲综合无码久久精品综合 | 欧美日韩综合一区二区三区 | 丰满少妇弄高潮了www | 久久久精品欧美一区二区免费 | 国产精品资源一区二区 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 丰满少妇女裸体bbw | 久久综合给合久久狠狠狠97色 | 高潮毛片无遮挡高清免费 | 国产精品高潮呻吟av久久 | 欧美 日韩 亚洲 在线 | 亚洲高清偷拍一区二区三区 | 日韩人妻系列无码专区 | 人妻无码αv中文字幕久久琪琪布 | 又大又紧又粉嫩18p少妇 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 97精品人妻一区二区三区香蕉 | 熟妇激情内射com | 亚洲中文字幕av在天堂 | 日本熟妇人妻xxxxx人hd | 暴力强奷在线播放无码 | 国精产品一品二品国精品69xx | 国内少妇偷人精品视频 | 中文字幕日韩精品一区二区三区 | 婷婷五月综合激情中文字幕 | 精品成人av一区二区三区 | 国产办公室秘书无码精品99 | 国产又爽又黄又刺激的视频 | 最近中文2019字幕第二页 | 在教室伦流澡到高潮hnp视频 | 水蜜桃亚洲一二三四在线 | 久久成人a毛片免费观看网站 | 午夜理论片yy44880影院 | 国产成人综合美国十次 | 欧美性猛交内射兽交老熟妇 | 九月婷婷人人澡人人添人人爽 | 少妇无码av无码专区在线观看 | 国产精品人人爽人人做我的可爱 | 久久精品人妻少妇一区二区三区 | 扒开双腿疯狂进出爽爽爽视频 | 九月婷婷人人澡人人添人人爽 | 黑人巨大精品欧美一区二区 | 爽爽影院免费观看 | 亚洲国产欧美在线成人 | 最近的中文字幕在线看视频 | 国产人妻精品午夜福利免费 | 国产亚洲精品精品国产亚洲综合 | 国产午夜亚洲精品不卡下载 | 黑人粗大猛烈进出高潮视频 | 国产精品理论片在线观看 | 丁香啪啪综合成人亚洲 | 亚洲欧美日韩综合久久久 | 2019午夜福利不卡片在线 | 亚洲熟妇色xxxxx欧美老妇 | 午夜成人1000部免费视频 | 欧洲熟妇精品视频 | 国产欧美精品一区二区三区 | 亚洲精品欧美二区三区中文字幕 | 又大又黄又粗又爽的免费视频 | 亚洲精品午夜无码电影网 | 国产九九九九九九九a片 | 国产三级精品三级男人的天堂 | 国产舌乚八伦偷品w中 | 国产成人精品视频ⅴa片软件竹菊 | 成人毛片一区二区 | 中文字幕无线码免费人妻 | 欧美兽交xxxx×视频 | 亚洲高清偷拍一区二区三区 | 1000部夫妻午夜免费 | 日本丰满熟妇videos | 四虎4hu永久免费 | 国产午夜精品一区二区三区嫩草 | 国产精品久久久久久亚洲影视内衣 | 久久久无码中文字幕久... | 成人动漫在线观看 | 2019午夜福利不卡片在线 | 色爱情人网站 | 日本护士毛茸茸高潮 | 九月婷婷人人澡人人添人人爽 | 亚洲中文字幕久久无码 | 亚洲精品午夜无码电影网 | 我要看www免费看插插视频 | 亚洲一区二区三区播放 | 亚洲精品一区三区三区在线观看 | √8天堂资源地址中文在线 | 国产欧美熟妇另类久久久 | 天堂亚洲2017在线观看 | 国产色在线 | 国产 | 啦啦啦www在线观看免费视频 | 亚洲区欧美区综合区自拍区 | 免费无码的av片在线观看 | 亚洲精品成人福利网站 | 男女超爽视频免费播放 | 99久久久无码国产精品免费 | 人人妻人人澡人人爽人人精品浪潮 | 亚洲日韩一区二区三区 | aa片在线观看视频在线播放 | 色婷婷欧美在线播放内射 | 澳门永久av免费网站 | 久久久www成人免费毛片 | 999久久久国产精品消防器材 | 国产真人无遮挡作爱免费视频 | 欧美刺激性大交 | 亚洲精品成a人在线观看 | 国语自产偷拍精品视频偷 | 国产精品-区区久久久狼 | 正在播放东北夫妻内射 | 亚洲综合久久一区二区 | 狠狠色丁香久久婷婷综合五月 | 55夜色66夜色国产精品视频 | 色狠狠av一区二区三区 | 日韩无套无码精品 | 免费网站看v片在线18禁无码 | 欧美一区二区三区 | 国产人妻大战黑人第1集 | 久久精品国产日本波多野结衣 | 亚洲精品成a人在线观看 | 黑森林福利视频导航 | 大色综合色综合网站 | 午夜无码人妻av大片色欲 | 亚洲日韩精品欧美一区二区 | 亚洲一区二区观看播放 | 国产欧美精品一区二区三区 | 蜜桃无码一区二区三区 | 欧美放荡的少妇 | 在线精品国产一区二区三区 | 国产成人无码a区在线观看视频app | 帮老师解开蕾丝奶罩吸乳网站 | 亚洲日本一区二区三区在线 | 日日摸日日碰夜夜爽av | 亚洲性无码av中文字幕 | 国精产品一品二品国精品69xx | 亚洲一区二区观看播放 | 国产熟妇高潮叫床视频播放 | 欧美刺激性大交 | 蜜桃视频韩日免费播放 | 国产亚洲精品久久久久久大师 | 亚洲色欲色欲天天天www | 国产人成高清在线视频99最全资源 | 亚洲色欲色欲天天天www | 久久97精品久久久久久久不卡 | 理论片87福利理论电影 | 激情内射日本一区二区三区 | 国产精品a成v人在线播放 | 国产精品永久免费视频 | 亚洲精品欧美二区三区中文字幕 | 真人与拘做受免费视频一 | 好爽又高潮了毛片免费下载 | 国产在线精品一区二区三区直播 | 男女性色大片免费网站 | 国产超级va在线观看视频 | 中文字幕av无码一区二区三区电影 | 99er热精品视频 | 午夜无码区在线观看 | 性欧美牲交在线视频 | 国产在线精品一区二区三区直播 | 久久久av男人的天堂 | 欧美日韩一区二区免费视频 | 2019午夜福利不卡片在线 | 国产免费观看黄av片 | 一本色道久久综合亚洲精品不卡 | 无码国内精品人妻少妇 | 美女极度色诱视频国产 | 在线精品国产一区二区三区 | 日日夜夜撸啊撸 | 亚洲成av人片天堂网无码】 | 婷婷丁香五月天综合东京热 | 亚洲成色www久久网站 | 牲欲强的熟妇农村老妇女视频 | 国产精品资源一区二区 | 国产精品对白交换视频 | 欧美三级a做爰在线观看 | 99国产欧美久久久精品 | 亚洲色无码一区二区三区 | 国产欧美熟妇另类久久久 | 亚洲日本va午夜在线电影 | 东京一本一道一二三区 | 露脸叫床粗话东北少妇 | 亚洲精品一区二区三区婷婷月 | 中文字幕av无码一区二区三区电影 | 国产无套粉嫩白浆在线 | 亚洲综合无码久久精品综合 | 奇米影视888欧美在线观看 | 久久人人爽人人爽人人片av高清 | 亚洲小说春色综合另类 | 免费观看又污又黄的网站 | 人人妻人人澡人人爽精品欧美 | 亚洲va中文字幕无码久久不卡 | 成人无码视频在线观看网站 | 国产精品va在线观看无码 | 精品厕所偷拍各类美女tp嘘嘘 | 日本饥渴人妻欲求不满 | 国产成人人人97超碰超爽8 | 扒开双腿疯狂进出爽爽爽视频 | 67194成是人免费无码 | 亚洲国产成人av在线观看 | 大肉大捧一进一出好爽视频 | 国产麻豆精品一区二区三区v视界 | а√天堂www在线天堂小说 | 色诱久久久久综合网ywww | 无遮无挡爽爽免费视频 | 2019nv天堂香蕉在线观看 | 国产精品久久久久久亚洲影视内衣 | 亚洲码国产精品高潮在线 | 久久午夜无码鲁丝片秋霞 | 久久久久人妻一区精品色欧美 | 精品久久8x国产免费观看 | 中文字幕无码av波多野吉衣 | 黑人粗大猛烈进出高潮视频 | 永久免费观看国产裸体美女 | aⅴ亚洲 日韩 色 图网站 播放 | 久久精品中文闷骚内射 | 免费观看的无遮挡av | 精品人妻人人做人人爽 | 玩弄人妻少妇500系列视频 | 青青青手机频在线观看 | 伊在人天堂亚洲香蕉精品区 | 色婷婷综合中文久久一本 | 成人欧美一区二区三区 | 亚洲精品国产精品乱码视色 | 亚洲国产成人a精品不卡在线 | 亚洲日韩一区二区三区 | 激情人妻另类人妻伦 | 在线а√天堂中文官网 | 国产精品人人妻人人爽 | 欧美freesex黑人又粗又大 | 极品尤物被啪到呻吟喷水 | 日本丰满护士爆乳xxxx | 国内精品一区二区三区不卡 | 色综合久久网 | 内射白嫩少妇超碰 | 成人无码精品一区二区三区 | 国产精品对白交换视频 | 麻豆国产人妻欲求不满谁演的 | 丰满人妻翻云覆雨呻吟视频 | 三上悠亚人妻中文字幕在线 | 亚洲色在线无码国产精品不卡 | 色噜噜亚洲男人的天堂 | 99久久久无码国产精品免费 | 国产精品成人av在线观看 | 亚洲乱亚洲乱妇50p | av无码久久久久不卡免费网站 | 成人一区二区免费视频 | 成 人 免费观看网站 | 亚洲日本在线电影 | 人人妻人人藻人人爽欧美一区 | 午夜福利一区二区三区在线观看 | 亚洲欧美日韩国产精品一区二区 | 18禁止看的免费污网站 | 宝宝好涨水快流出来免费视频 | 18黄暴禁片在线观看 | 国产乱人伦av在线无码 | 成人毛片一区二区 | 国产激情无码一区二区 | 99久久人妻精品免费二区 | 扒开双腿疯狂进出爽爽爽视频 | 青青青爽视频在线观看 | 精品无码国产一区二区三区av | 亚洲一区二区三区国产精华液 | 伊在人天堂亚洲香蕉精品区 | 国产口爆吞精在线视频 | 麻豆国产丝袜白领秘书在线观看 | 老头边吃奶边弄进去呻吟 | 男女爱爱好爽视频免费看 | 亚洲成av人片天堂网无码】 | 亚洲欧美色中文字幕在线 | 亚洲人成网站免费播放 | 亚洲小说图区综合在线 | 精品熟女少妇av免费观看 | 动漫av一区二区在线观看 | 日韩av无码一区二区三区不卡 | 亚洲国产成人a精品不卡在线 | 日韩成人一区二区三区在线观看 | 18无码粉嫩小泬无套在线观看 | 午夜丰满少妇性开放视频 | 在线成人www免费观看视频 | av无码久久久久不卡免费网站 | 久久精品国产亚洲精品 | 中文字幕精品av一区二区五区 | 色偷偷人人澡人人爽人人模 | 国产精品永久免费视频 | 中文无码成人免费视频在线观看 | 国产乡下妇女做爰 | 欧美肥老太牲交大战 | 国产乱码精品一品二品 | 天堂亚洲2017在线观看 | 国产办公室秘书无码精品99 | 久久精品中文字幕一区 | 装睡被陌生人摸出水好爽 | 久久精品国产日本波多野结衣 | 大胆欧美熟妇xx | 国产一区二区三区精品视频 | 日本精品人妻无码免费大全 | 久久久久99精品成人片 | 四虎国产精品一区二区 | 精品乱子伦一区二区三区 | 99久久精品日本一区二区免费 | 久久久久se色偷偷亚洲精品av | 中文字幕无码热在线视频 | 亚洲成a人片在线观看无码3d | aⅴ在线视频男人的天堂 | 色综合视频一区二区三区 | 欧美黑人性暴力猛交喷水 | 特级做a爰片毛片免费69 | 人妻尝试又大又粗久久 | 国产一区二区三区精品视频 | 麻豆md0077饥渴少妇 | 狠狠噜狠狠狠狠丁香五月 | 精品无码一区二区三区爱欲 | 东京热无码av男人的天堂 | 在线观看免费人成视频 | 好爽又高潮了毛片免费下载 | 蜜臀aⅴ国产精品久久久国产老师 | 亚洲日本在线电影 | 国产又粗又硬又大爽黄老大爷视 | 亚洲欧洲日本无在线码 | 永久免费观看美女裸体的网站 | 熟妇人妻中文av无码 | 亚洲自偷精品视频自拍 | 在线观看欧美一区二区三区 | 国产成人综合美国十次 | 日韩人妻少妇一区二区三区 | 国产av剧情md精品麻豆 | 国产成人一区二区三区在线观看 | 亚洲 高清 成人 动漫 | 欧美日韩一区二区免费视频 | 国产熟妇高潮叫床视频播放 | 内射爽无广熟女亚洲 | 高清国产亚洲精品自在久久 | 亚洲男人av天堂午夜在 | 欧美精品无码一区二区三区 | 无码国产乱人伦偷精品视频 | 少妇性荡欲午夜性开放视频剧场 | 中文字幕无线码免费人妻 | 又湿又紧又大又爽a视频国产 | 日本肉体xxxx裸交 | 国产特级毛片aaaaaaa高清 | 美女扒开屁股让男人桶 | 97精品人妻一区二区三区香蕉 | 国产国语老龄妇女a片 | 又大又硬又黄的免费视频 | 欧美高清在线精品一区 | 国产精品二区一区二区aⅴ污介绍 | 蜜桃视频插满18在线观看 | 国产网红无码精品视频 | 亚洲 a v无 码免 费 成 人 a v | 精品人妻av区 | 麻豆果冻传媒2021精品传媒一区下载 | 国产极品美女高潮无套在线观看 | 亚拍精品一区二区三区探花 | 未满小14洗澡无码视频网站 | 欧美 丝袜 自拍 制服 另类 | 中文字幕乱妇无码av在线 | 亚洲国产欧美国产综合一区 | 日韩人妻无码一区二区三区久久99 | 成熟女人特级毛片www免费 | 人人澡人摸人人添 | 成人无码影片精品久久久 | 男人的天堂2018无码 | 色五月丁香五月综合五月 | 国内精品九九久久久精品 | 亚洲精品一区二区三区四区五区 | 天天拍夜夜添久久精品大 | 国产成人无码a区在线观看视频app | 国产成人综合美国十次 | 少妇激情av一区二区 | 国内综合精品午夜久久资源 | 亚欧洲精品在线视频免费观看 | 亚洲色www成人永久网址 | 亚洲国产日韩a在线播放 | 国产亚洲日韩欧美另类第八页 | 久9re热视频这里只有精品 | 一个人免费观看的www视频 | 中文字幕无码免费久久99 | 午夜无码区在线观看 | 欧美日韩综合一区二区三区 | 狠狠亚洲超碰狼人久久 | 中文字幕无线码免费人妻 | 国产成人无码av片在线观看不卡 | 欧美亚洲国产一区二区三区 | 国产精品久久久午夜夜伦鲁鲁 | 亚洲国产精品久久久久久 | 嫩b人妻精品一区二区三区 | 天堂无码人妻精品一区二区三区 | 国产97人人超碰caoprom | 日日碰狠狠丁香久燥 | 在线天堂新版最新版在线8 | 影音先锋中文字幕无码 | 中文毛片无遮挡高清免费 | aa片在线观看视频在线播放 | 国产亚洲精品久久久久久国模美 | 色诱久久久久综合网ywww | 日韩欧美中文字幕在线三区 | 三上悠亚人妻中文字幕在线 | 少妇性l交大片欧洲热妇乱xxx | 少妇性l交大片 | 一本色道久久综合亚洲精品不卡 | 久久精品女人的天堂av | 久久久国产精品无码免费专区 | 无码人妻av免费一区二区三区 | 性欧美videos高清精品 | 精品无码成人片一区二区98 | 久久久久av无码免费网 | 国产精品-区区久久久狼 | 日本在线高清不卡免费播放 | 丰满岳乱妇在线观看中字无码 | 最近免费中文字幕中文高清百度 | 国产精品香蕉在线观看 | 午夜精品一区二区三区在线观看 | 97久久超碰中文字幕 | 中文字幕无码av激情不卡 | 精品久久8x国产免费观看 | 老熟妇仑乱视频一区二区 | 青青草原综合久久大伊人精品 | 熟女少妇在线视频播放 | 鲁鲁鲁爽爽爽在线视频观看 | 精品久久久无码中文字幕 | 国色天香社区在线视频 | 国产又粗又硬又大爽黄老大爷视 | 久久久久久a亚洲欧洲av冫 | 在教室伦流澡到高潮hnp视频 | 成年美女黄网站色大免费全看 | 领导边摸边吃奶边做爽在线观看 | 中文字幕无码免费久久9一区9 | 黑人巨大精品欧美黑寡妇 | 久久精品女人天堂av免费观看 | 久久精品中文字幕大胸 | 乱中年女人伦av三区 | 成人综合网亚洲伊人 | 人人澡人人透人人爽 | 一本久道久久综合婷婷五月 | 高潮毛片无遮挡高清免费视频 | 老太婆性杂交欧美肥老太 | 国产精品.xx视频.xxtv | 一本久久伊人热热精品中文字幕 | 亚洲国产成人a精品不卡在线 | 亚洲色偷偷偷综合网 | 免费男性肉肉影院 | 亚洲精品综合一区二区三区在线 | 亚洲va欧美va天堂v国产综合 | 日本大乳高潮视频在线观看 | 亚洲国产欧美在线成人 | 中文字幕无线码免费人妻 | 国产人妖乱国产精品人妖 | 狠狠色丁香久久婷婷综合五月 | 7777奇米四色成人眼影 | 久久国产精品偷任你爽任你 | 在线精品国产一区二区三区 | 日本一区二区三区免费高清 | 性欧美牲交xxxxx视频 | 国产精品久久国产三级国 | 亚洲成在人网站无码天堂 | 国产在线一区二区三区四区五区 | 国产偷抇久久精品a片69 | 久久精品国产99久久6动漫 | 88国产精品欧美一区二区三区 | 成人精品一区二区三区中文字幕 | yw尤物av无码国产在线观看 | 国产亚洲视频中文字幕97精品 | 国产精品va在线观看无码 | 一个人看的www免费视频在线观看 | 永久免费观看国产裸体美女 | 麻豆国产97在线 | 欧洲 | 亚洲成av人在线观看网址 | 欧美日韩人成综合在线播放 | 久久精品视频在线看15 | 国产乡下妇女做爰 | 久久久久人妻一区精品色欧美 | 午夜精品久久久久久久 | 性欧美疯狂xxxxbbbb | 亚洲成色www久久网站 | 麻豆av传媒蜜桃天美传媒 | 欧美肥老太牲交大战 | 中文字幕乱码亚洲无线三区 | 国产午夜亚洲精品不卡 | 红桃av一区二区三区在线无码av | 少妇的肉体aa片免费 | 亚洲精品一区国产 | 少妇无套内谢久久久久 | 久久综合给久久狠狠97色 | 欧美放荡的少妇 | 成年美女黄网站色大免费全看 | 精品aⅴ一区二区三区 | 国産精品久久久久久久 | 久久无码人妻影院 | 小鲜肉自慰网站xnxx | 亚洲精品一区国产 | 东北女人啪啪对白 | 女人高潮内射99精品 | 国产精品久久久久7777 | 国产成人久久精品流白浆 | 女人和拘做爰正片视频 | 思思久久99热只有频精品66 | 国内丰满熟女出轨videos | 7777奇米四色成人眼影 | 乱码av麻豆丝袜熟女系列 | 夜夜高潮次次欢爽av女 | 久久精品人妻少妇一区二区三区 | а√天堂www在线天堂小说 | 亚洲午夜福利在线观看 | 98国产精品综合一区二区三区 | 久久综合九色综合欧美狠狠 | 中文字幕av伊人av无码av | 波多野42部无码喷潮在线 | 国产激情综合五月久久 | 久久精品人人做人人综合 | 成人精品一区二区三区中文字幕 | www国产亚洲精品久久网站 | 久久99精品久久久久婷婷 | 国产乱人无码伦av在线a | 亚洲s色大片在线观看 | 亚洲熟妇自偷自拍另类 | 男女猛烈xx00免费视频试看 | 性色欲网站人妻丰满中文久久不卡 | 精品偷拍一区二区三区在线看 | 亚洲日韩乱码中文无码蜜桃臀网站 | 日韩精品乱码av一区二区 | 国产亚洲美女精品久久久2020 | 国产精品va在线观看无码 | 黑人粗大猛烈进出高潮视频 | 久久99精品国产麻豆蜜芽 | 中文精品久久久久人妻不卡 | 日日躁夜夜躁狠狠躁 | 日日摸夜夜摸狠狠摸婷婷 | 亚洲国产欧美日韩精品一区二区三区 | 久久精品99久久香蕉国产色戒 | 久久精品无码一区二区三区 | 国产人妻人伦精品1国产丝袜 | 日韩少妇内射免费播放 | 久久久精品欧美一区二区免费 | 国产乱码精品一品二品 | 一区二区三区高清视频一 | 亚洲中文字幕av在天堂 | 中文字幕精品av一区二区五区 | 国产精品久久久久久久影院 | 久久精品国产亚洲精品 | 亚洲国产精品无码一区二区三区 | 黑人玩弄人妻中文在线 | 精品国产aⅴ无码一区二区 | 国产精品毛片一区二区 | 亚洲精品中文字幕久久久久 | 午夜男女很黄的视频 | 婷婷丁香六月激情综合啪 | 国产99久久精品一区二区 | 国产9 9在线 | 中文 | 高清国产亚洲精品自在久久 | 国产麻豆精品一区二区三区v视界 | 国产人妖乱国产精品人妖 | 国产精品二区一区二区aⅴ污介绍 | 丰腴饱满的极品熟妇 | 99久久婷婷国产综合精品青草免费 | 天下第一社区视频www日本 | 精品aⅴ一区二区三区 | 久久精品国产一区二区三区 | 极品尤物被啪到呻吟喷水 | 色欲人妻aaaaaaa无码 | 九九久久精品国产免费看小说 | 国产一区二区三区四区五区加勒比 | 久久亚洲中文字幕精品一区 | 久久午夜无码鲁丝片秋霞 | 国产精品怡红院永久免费 | 久久99精品久久久久久 | 亚洲精品鲁一鲁一区二区三区 | 狠狠cao日日穞夜夜穞av | 最近中文2019字幕第二页 | 欧美日韩人成综合在线播放 | 亚洲精品成a人在线观看 | 高潮毛片无遮挡高清免费 | 国产明星裸体无码xxxx视频 | 一本久久a久久精品vr综合 | 国产办公室秘书无码精品99 | 图片区 小说区 区 亚洲五月 | 精品偷拍一区二区三区在线看 | 天天摸天天透天天添 | 亚洲日韩av片在线观看 | 任你躁在线精品免费 | 在线看片无码永久免费视频 | 人人澡人人透人人爽 | 女人色极品影院 | 九月婷婷人人澡人人添人人爽 | 九九在线中文字幕无码 | 亚洲 高清 成人 动漫 | 日本一区二区三区免费高清 | 日日天干夜夜狠狠爱 | 国产免费观看黄av片 | 久久久久亚洲精品中文字幕 | 久久精品无码一区二区三区 | 亚洲成色在线综合网站 | 丝袜足控一区二区三区 | 亚洲а∨天堂久久精品2021 | 久久精品中文字幕一区 | 亚洲成在人网站无码天堂 | 色婷婷综合激情综在线播放 | 女人色极品影院 | 亚洲午夜福利在线观看 | 国产精品久久国产精品99 | 亚洲中文字幕在线无码一区二区 | 久久国内精品自在自线 | 麻豆蜜桃av蜜臀av色欲av | 欧美国产亚洲日韩在线二区 | 熟妇人妻无码xxx视频 | 亚洲色欲色欲天天天www | 少妇性荡欲午夜性开放视频剧场 | av人摸人人人澡人人超碰下载 | 在线看片无码永久免费视频 | 日本欧美一区二区三区乱码 | 精品人人妻人人澡人人爽人人 | 久久精品99久久香蕉国产色戒 | 啦啦啦www在线观看免费视频 | 99久久亚洲精品无码毛片 | 久久精品人人做人人综合试看 | 亚洲精品www久久久 | 亚洲综合久久一区二区 | 少妇高潮喷潮久久久影院 | 人人妻人人澡人人爽人人精品 | 免费观看又污又黄的网站 | 中国女人内谢69xxxxxa片 | 中文字幕人妻丝袜二区 | 嫩b人妻精品一区二区三区 | 99久久久无码国产aaa精品 | 少妇被黑人到高潮喷出白浆 | 白嫩日本少妇做爰 | 亲嘴扒胸摸屁股激烈网站 | 亚洲色www成人永久网址 | 国产精品永久免费视频 | 国精品人妻无码一区二区三区蜜柚 | 欧美性猛交内射兽交老熟妇 | 狠狠cao日日穞夜夜穞av | 又大又硬又黄的免费视频 | 国产激情精品一区二区三区 | 蜜桃无码一区二区三区 | 中文毛片无遮挡高清免费 | 夜夜影院未满十八勿进 | 少妇人妻偷人精品无码视频 | 日本一区二区三区免费高清 | 激情国产av做激情国产爱 | 欧美放荡的少妇 | а天堂中文在线官网 | 亚洲 高清 成人 动漫 | 欧美日韩久久久精品a片 | 久久99精品国产麻豆 | 久久久成人毛片无码 | 久久zyz资源站无码中文动漫 | 成人精品视频一区二区三区尤物 | 18禁止看的免费污网站 | 日日躁夜夜躁狠狠躁 | 日韩 欧美 动漫 国产 制服 | 女人和拘做爰正片视频 | 永久黄网站色视频免费直播 | 老子影院午夜精品无码 | 国产成人精品无码播放 | 亚洲欧美精品伊人久久 | 西西人体www44rt大胆高清 | 无码国内精品人妻少妇 | 国产色视频一区二区三区 | 人妻插b视频一区二区三区 | 俺去俺来也www色官网 | 偷窥日本少妇撒尿chinese | 亚洲一区二区三区含羞草 | 国产精品久久国产三级国 | 秋霞特色aa大片 | 国产性生交xxxxx无码 | 国产女主播喷水视频在线观看 | 色婷婷av一区二区三区之红樱桃 | 欧洲精品码一区二区三区免费看 | 色婷婷欧美在线播放内射 | 国产免费观看黄av片 | 日韩亚洲欧美中文高清在线 | 日本一区二区更新不卡 | 国产在线精品一区二区三区直播 | 国产一区二区三区日韩精品 | 国产av一区二区精品久久凹凸 | а√资源新版在线天堂 | 久久亚洲国产成人精品性色 | 伊人久久大香线焦av综合影院 | 无码av中文字幕免费放 | 蜜桃av抽搐高潮一区二区 | 亚洲人亚洲人成电影网站色 | 亚洲人成人无码网www国产 | 亚洲另类伦春色综合小说 | 久久人人爽人人爽人人片ⅴ | 亚洲中文字幕在线无码一区二区 | 国产一区二区三区精品视频 | 亚洲日本va中文字幕 | 一本久道久久综合狠狠爱 | 国产成人无码区免费内射一片色欲 | 国产乱人伦偷精品视频 | 无码一区二区三区在线 | 国产又爽又黄又刺激的视频 | 精品无码国产一区二区三区av | 99久久精品日本一区二区免费 | 国产av剧情md精品麻豆 | 日本精品少妇一区二区三区 | 妺妺窝人体色www在线小说 | 日日天干夜夜狠狠爱 | 亚洲一区二区三区无码久久 | 亚洲 a v无 码免 费 成 人 a v | 九月婷婷人人澡人人添人人爽 | 蜜臀av无码人妻精品 | 亚洲成色在线综合网站 | 国产在线精品一区二区三区直播 | 精品人妻人人做人人爽夜夜爽 | 天堂久久天堂av色综合 | 久久视频在线观看精品 | 丰满人妻一区二区三区免费视频 | 一本久久a久久精品vr综合 | 国产色精品久久人妻 | 亚洲欧洲中文日韩av乱码 | 久久久久亚洲精品中文字幕 | 人人妻人人澡人人爽人人精品 | 狠狠综合久久久久综合网 | 18无码粉嫩小泬无套在线观看 | 久久精品国产一区二区三区 | 欧美人与牲动交xxxx | 亚洲精品中文字幕久久久久 | 国产精品对白交换视频 | 欧美日韩视频无码一区二区三 | 国产精品国产自线拍免费软件 | 亚洲精品国偷拍自产在线观看蜜桃 | 亚洲s色大片在线观看 | 夜精品a片一区二区三区无码白浆 | 亚洲中文字幕无码中文字在线 | 综合人妻久久一区二区精品 | av无码久久久久不卡免费网站 | 六十路熟妇乱子伦 | 1000部啪啪未满十八勿入下载 | 亚洲の无码国产の无码影院 | 久久久久av无码免费网 | 国产超级va在线观看视频 | 国产美女精品一区二区三区 | 成人性做爰aaa片免费看 | 久久精品99久久香蕉国产色戒 | 成人aaa片一区国产精品 | 日日碰狠狠躁久久躁蜜桃 | 国产成人综合色在线观看网站 | 国产口爆吞精在线视频 | 亚洲娇小与黑人巨大交 | 中文毛片无遮挡高清免费 | 欧美熟妇另类久久久久久多毛 | 激情爆乳一区二区三区 | 少妇性俱乐部纵欲狂欢电影 | 亚洲欧洲日本综合aⅴ在线 | 亚洲啪av永久无码精品放毛片 | 亚洲国产精品无码一区二区三区 | av在线亚洲欧洲日产一区二区 | 美女黄网站人色视频免费国产 | 久久精品女人天堂av免费观看 | 日本乱偷人妻中文字幕 | 欧美老妇交乱视频在线观看 | 性欧美疯狂xxxxbbbb | 99久久久国产精品无码免费 | 国产绳艺sm调教室论坛 | 日本乱人伦片中文三区 | 日本熟妇大屁股人妻 | 成人性做爰aaa片免费看不忠 | 97无码免费人妻超级碰碰夜夜 | 日日麻批免费40分钟无码 | 中文字幕人妻无码一区二区三区 | 色偷偷人人澡人人爽人人模 | 成人性做爰aaa片免费看 | 成年女人永久免费看片 | 国产亚洲精品精品国产亚洲综合 | 又粗又大又硬又长又爽 | 青青青手机频在线观看 | 亚洲自偷自偷在线制服 | 中文无码精品a∨在线观看不卡 | 久久成人a毛片免费观看网站 | 亚洲综合无码一区二区三区 | 99久久婷婷国产综合精品青草免费 | 日日碰狠狠丁香久燥 | 美女扒开屁股让男人桶 | 久久国内精品自在自线 | 国精产品一区二区三区 | 狠狠噜狠狠狠狠丁香五月 | 免费观看激色视频网站 | 国产明星裸体无码xxxx视频 | 国产精品久久久午夜夜伦鲁鲁 | 无码人妻黑人中文字幕 | 日韩精品无码一本二本三本色 | 国产三级久久久精品麻豆三级 | 一区二区三区高清视频一 | 7777奇米四色成人眼影 | 樱花草在线播放免费中文 | 亚洲精品无码人妻无码 | 久久这里只有精品视频9 | 老熟妇仑乱视频一区二区 | 大屁股大乳丰满人妻 | 亚洲成色www久久网站 | 国产美女精品一区二区三区 | 亚洲小说图区综合在线 | 日本一区二区三区免费播放 | 一二三四在线观看免费视频 | 亚洲精品久久久久中文第一幕 | 色妞www精品免费视频 | 无码国产乱人伦偷精品视频 | 国产午夜亚洲精品不卡 | 亚洲国产成人a精品不卡在线 | 免费乱码人妻系列无码专区 | 亚洲精品久久久久中文第一幕 | 丰满少妇熟乱xxxxx视频 | 无套内谢的新婚少妇国语播放 | 国产熟妇另类久久久久 | 高清不卡一区二区三区 | 久久人人爽人人爽人人片av高清 | 国产 精品 自在自线 | 99精品国产综合久久久久五月天 | 精品久久久无码中文字幕 | 性欧美熟妇videofreesex | 在线观看欧美一区二区三区 | 人人爽人人爽人人片av亚洲 | 欧美激情内射喷水高潮 | 久久精品丝袜高跟鞋 | 99在线 | 亚洲 | 天堂无码人妻精品一区二区三区 | 色欲人妻aaaaaaa无码 | 国产人妻精品午夜福利免费 | 国产精品久久久一区二区三区 | 一本色道久久综合狠狠躁 | 日本大乳高潮视频在线观看 | 久久精品国产日本波多野结衣 | 久久精品女人天堂av免费观看 | 色婷婷综合中文久久一本 | www国产亚洲精品久久久日本 | 免费国产黄网站在线观看 | 国产午夜亚洲精品不卡下载 | 青青青爽视频在线观看 | 天天综合网天天综合色 | 无码播放一区二区三区 | 亚洲人亚洲人成电影网站色 | 无码一区二区三区在线观看 | 欧美亚洲日韩国产人成在线播放 | 日韩精品无码一本二本三本色 | 中文字幕无码人妻少妇免费 | 日日天日日夜日日摸 | 国产精品久久久一区二区三区 | 国产美女极度色诱视频www | 国产手机在线αⅴ片无码观看 | 76少妇精品导航 | 国产免费久久精品国产传媒 | 97久久国产亚洲精品超碰热 | 久久99精品久久久久婷婷 | 国产无遮挡又黄又爽免费视频 | 中文字幕 亚洲精品 第1页 | 人妻天天爽夜夜爽一区二区 | 人妻中文无码久热丝袜 | 精品无码av一区二区三区 | 成人无码精品一区二区三区 | 成人试看120秒体验区 | 日本一区二区更新不卡 | 国产97在线 | 亚洲 | 久久国产精品_国产精品 | 国产精品久久久av久久久 | 久热国产vs视频在线观看 | 亚洲人成影院在线无码按摩店 | 99久久人妻精品免费二区 | 欧美xxxxx精品 | 国内揄拍国内精品少妇国语 | 亚洲精品综合一区二区三区在线 | 免费无码肉片在线观看 | 18无码粉嫩小泬无套在线观看 | 国产乡下妇女做爰 | 亚洲码国产精品高潮在线 | 国产超碰人人爽人人做人人添 | 久久久久成人精品免费播放动漫 | 亚洲综合伊人久久大杳蕉 | 国产网红无码精品视频 | 精品国产一区av天美传媒 | 日本护士毛茸茸高潮 | 亚洲阿v天堂在线 | 色情久久久av熟女人妻网站 | 无码人妻丰满熟妇区毛片18 | 国产福利视频一区二区 | 国内少妇偷人精品视频免费 | 欧美黑人乱大交 | 日韩人妻无码中文字幕视频 | 欧美野外疯狂做受xxxx高潮 | 男女爱爱好爽视频免费看 | 色情久久久av熟女人妻网站 | 精品成人av一区二区三区 | 无码吃奶揉捏奶头高潮视频 | 色婷婷香蕉在线一区二区 | 成人综合网亚洲伊人 | 无码人妻av免费一区二区三区 | 图片区 小说区 区 亚洲五月 | 中文久久乱码一区二区 | 国产精品亚洲专区无码不卡 | 亲嘴扒胸摸屁股激烈网站 | 国产精品亚洲а∨无码播放麻豆 | 国产精品亚洲а∨无码播放麻豆 | 国产成人无码一二三区视频 | 午夜精品久久久内射近拍高清 | 国产人妻久久精品二区三区老狼 | 欧美人与禽猛交狂配 | 成人欧美一区二区三区黑人 | 国产人妻人伦精品1国产丝袜 | 亚洲日韩av一区二区三区中文 | 一个人看的www免费视频在线观看 | 又大又黄又粗又爽的免费视频 | 又粗又大又硬又长又爽 | 欧美性猛交xxxx富婆 | 99久久婷婷国产综合精品青草免费 | 狠狠色噜噜狠狠狠狠7777米奇 | av无码久久久久不卡免费网站 | 人妻无码αv中文字幕久久琪琪布 | 欧美日韩色另类综合 | 欧美人与物videos另类 | 真人与拘做受免费视频一 | 鲁鲁鲁爽爽爽在线视频观看 | 小sao货水好多真紧h无码视频 | 无码乱肉视频免费大全合集 | 自拍偷自拍亚洲精品被多人伦好爽 | 欧美日韩亚洲国产精品 | 十八禁视频网站在线观看 | 国产综合久久久久鬼色 | 国产亚洲视频中文字幕97精品 | 强开小婷嫩苞又嫩又紧视频 | 99久久精品无码一区二区毛片 | 国产美女精品一区二区三区 | 久青草影院在线观看国产 | 精品成人av一区二区三区 | 久久国产自偷自偷免费一区调 | 精品成在人线av无码免费看 | 国产精品美女久久久 | 欧美野外疯狂做受xxxx高潮 | 中文字幕精品av一区二区五区 | 亚洲人亚洲人成电影网站色 | 欧美日韩在线亚洲综合国产人 | 色妞www精品免费视频 | 黑人大群体交免费视频 | 性啪啪chinese东北女人 | 国产热a欧美热a在线视频 | 夜夜躁日日躁狠狠久久av | 中国女人内谢69xxxx | 日韩精品无码一本二本三本色 | 无码免费一区二区三区 | 任你躁国产自任一区二区三区 | 国产激情一区二区三区 | 天天燥日日燥 | 久久99久久99精品中文字幕 | 亚洲熟妇色xxxxx欧美老妇 | 国产超碰人人爽人人做人人添 | 欧美国产亚洲日韩在线二区 | 欧美freesex黑人又粗又大 | 亚洲理论电影在线观看 | 国产精品亚洲专区无码不卡 | 午夜精品久久久内射近拍高清 | 久久婷婷五月综合色国产香蕉 | 亚洲熟女一区二区三区 | 国产精品-区区久久久狼 | 国产精品多人p群无码 | 人妻少妇被猛烈进入中文字幕 | 国内精品久久毛片一区二区 | 久久精品国产精品国产精品污 | 亚洲男女内射在线播放 | 久久99热只有频精品8 | 国产午夜福利100集发布 | 国产成人无码一二三区视频 | 亚洲精品国产第一综合99久久 | 色婷婷久久一区二区三区麻豆 | 在线播放免费人成毛片乱码 | a在线观看免费网站大全 | 亚洲色成人中文字幕网站 | 永久免费精品精品永久-夜色 | 国产香蕉97碰碰久久人人 | 久久99久久99精品中文字幕 | 国产农村乱对白刺激视频 | 久久99久久99精品中文字幕 | 无码吃奶揉捏奶头高潮视频 | 99久久人妻精品免费二区 | 国产精品亚洲а∨无码播放麻豆 | 国产精品无码成人午夜电影 | 精品久久久无码中文字幕 | 欧美亚洲国产一区二区三区 | 少妇人妻偷人精品无码视频 | 国产九九九九九九九a片 | 婷婷五月综合缴情在线视频 | 色欲久久久天天天综合网精品 | 日产精品高潮呻吟av久久 | 国内老熟妇对白xxxxhd | 日本丰满护士爆乳xxxx | 国产人妻人伦精品1国产丝袜 | 99er热精品视频 | 久久久亚洲欧洲日产国码αv | 久久精品女人天堂av免费观看 | 国产成人无码av一区二区 | 少妇高潮一区二区三区99 | 色综合久久久无码中文字幕 | 中文字幕无码日韩专区 | 日韩视频 中文字幕 视频一区 | 97色伦图片97综合影院 | 老司机亚洲精品影院无码 | 久久国产精品精品国产色婷婷 | 亚洲精品鲁一鲁一区二区三区 | 亚洲中文字幕无码中文字在线 | 成 人 网 站国产免费观看 | 狠狠色欧美亚洲狠狠色www | 亚洲成a人片在线观看日本 | av小次郎收藏 | 乱人伦人妻中文字幕无码久久网 | 日韩少妇内射免费播放 | 国产国语老龄妇女a片 | 成人综合网亚洲伊人 | 国产特级毛片aaaaaaa高清 | 国产精品久久久久久久9999 | 粗大的内捧猛烈进出视频 | 亚洲国产精品久久久久久 | 丝袜 中出 制服 人妻 美腿 | 成人性做爰aaa片免费看 | 一本无码人妻在中文字幕免费 | 亚洲成av人综合在线观看 | 亚洲精品综合一区二区三区在线 | 无遮挡国产高潮视频免费观看 | 久久久久99精品成人片 | √天堂中文官网8在线 | 国产莉萝无码av在线播放 | 无码国产乱人伦偷精品视频 | 欧美丰满老熟妇xxxxx性 | 精品一区二区三区无码免费视频 | 日韩精品一区二区av在线 | 一区二区三区乱码在线 | 欧洲 | 欧美成人午夜精品久久久 | 精品aⅴ一区二区三区 | 免费国产成人高清在线观看网站 | 人妻aⅴ无码一区二区三区 | 永久免费精品精品永久-夜色 | 国产特级毛片aaaaaa高潮流水 | 精品欧洲av无码一区二区三区 | 亚洲国产精品一区二区美利坚 | 色综合久久88色综合天天 | 国产性生交xxxxx无码 | 少妇无码一区二区二三区 | 久久99精品国产.久久久久 | 综合网日日天干夜夜久久 | 久久久久久九九精品久 | 亚洲精品无码国产 | 精品偷自拍另类在线观看 | 老熟女重囗味hdxx69 | 未满成年国产在线观看 | 免费无码的av片在线观看 | 日本又色又爽又黄的a片18禁 | 成年美女黄网站色大免费全看 | 蜜臀aⅴ国产精品久久久国产老师 | 亚洲日本va午夜在线电影 | 97无码免费人妻超级碰碰夜夜 | аⅴ资源天堂资源库在线 | 四虎国产精品一区二区 | 国产亚洲精品久久久闺蜜 | 蜜桃视频插满18在线观看 | 国产av久久久久精东av | 亚洲の无码国产の无码步美 | 亚洲欧美中文字幕5发布 | 成在人线av无码免费 | 暴力强奷在线播放无码 | 国语自产偷拍精品视频偷 | 色欲久久久天天天综合网精品 | 水蜜桃色314在线观看 | 亚洲熟熟妇xxxx | 亚洲 高清 成人 动漫 | 亚洲欧美国产精品久久 | 久久久久亚洲精品中文字幕 | 亚洲综合无码久久精品综合 | 亚洲成a人片在线观看无码3d | 亚洲精品成a人在线观看 | 暴力强奷在线播放无码 | 中文字幕精品av一区二区五区 | 色 综合 欧美 亚洲 国产 | 性啪啪chinese东北女人 | 亚洲中文字幕在线无码一区二区 | 青草青草久热国产精品 | 久久精品中文字幕一区 | 欧美性生交活xxxxxdddd | 伊人久久大香线蕉午夜 | 午夜肉伦伦影院 | 人妻少妇精品无码专区二区 | 国产性生大片免费观看性 | 国产福利视频一区二区 | 福利一区二区三区视频在线观看 | 无码一区二区三区在线观看 | 97久久国产亚洲精品超碰热 | 久久成人a毛片免费观看网站 | 小泽玛莉亚一区二区视频在线 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 国产两女互慰高潮视频在线观看 | 亚洲成在人网站无码天堂 | 国产97色在线 | 免 | 久久精品人人做人人综合 | 国产熟女一区二区三区四区五区 | 国产热a欧美热a在线视频 | 亚洲成a人片在线观看无码3d | 男人的天堂av网站 | 青青草原综合久久大伊人精品 | 六月丁香婷婷色狠狠久久 | 午夜无码区在线观看 | 中文精品无码中文字幕无码专区 | 国产九九九九九九九a片 | а天堂中文在线官网 | 日日躁夜夜躁狠狠躁 | 亚洲国产综合无码一区 | 色五月五月丁香亚洲综合网 | 四十如虎的丰满熟妇啪啪 | 在线a亚洲视频播放在线观看 | 欧美成人午夜精品久久久 | 强奷人妻日本中文字幕 | 97无码免费人妻超级碰碰夜夜 | 日产精品99久久久久久 | 亚洲人亚洲人成电影网站色 | 女人色极品影院 | 女人被男人爽到呻吟的视频 | 欧美 日韩 人妻 高清 中文 | 成年女人永久免费看片 | 亚洲天堂2017无码 | av无码久久久久不卡免费网站 | 图片区 小说区 区 亚洲五月 | 亚洲人成无码网www | 免费乱码人妻系列无码专区 | 国产亚洲日韩欧美另类第八页 | 国产一区二区三区精品视频 | 小泽玛莉亚一区二区视频在线 | 成人免费无码大片a毛片 | 97人妻精品一区二区三区 | 亚洲精品无码国产 | 蜜桃视频韩日免费播放 | 欧美亚洲日韩国产人成在线播放 | 在线 国产 欧美 亚洲 天堂 | 荫蒂添的好舒服视频囗交 | 久久午夜无码鲁丝片 | 精品人妻人人做人人爽夜夜爽 | 欧美老妇交乱视频在线观看 | 国产国产精品人在线视 | 亚洲国产精品无码久久久久高潮 | 日韩视频 中文字幕 视频一区 | 亚洲欧美日韩综合久久久 | 亚洲中文无码av永久不收费 | 国产精品人人妻人人爽 | 中文字幕 亚洲精品 第1页 | 久久视频在线观看精品 | 丰满人妻一区二区三区免费视频 | 伊在人天堂亚洲香蕉精品区 | 亚洲精品国产精品乱码视色 | 欧美成人午夜精品久久久 | 久久久久se色偷偷亚洲精品av | 东京热男人av天堂 | 国产午夜手机精彩视频 | 熟妇人妻激情偷爽文 | 天天躁夜夜躁狠狠是什么心态 | 中文毛片无遮挡高清免费 | 露脸叫床粗话东北少妇 | 台湾无码一区二区 | 熟女少妇在线视频播放 | 97久久国产亚洲精品超碰热 | 国产成人久久精品流白浆 | 狠狠噜狠狠狠狠丁香五月 | 人人爽人人澡人人人妻 | 麻花豆传媒剧国产免费mv在线 | 国产亲子乱弄免费视频 | 成人无码影片精品久久久 | 99久久婷婷国产综合精品青草免费 | 国产在线精品一区二区高清不卡 | 亚洲欧洲中文日韩av乱码 | 东京一本一道一二三区 | 精品一区二区不卡无码av | 3d动漫精品啪啪一区二区中 | 国产九九九九九九九a片 | 一本精品99久久精品77 | 亚洲欧美精品aaaaaa片 | 精品偷拍一区二区三区在线看 | 久久精品女人的天堂av | 人妻夜夜爽天天爽三区 | 国产一区二区三区影院 | 黄网在线观看免费网站 | 欧美自拍另类欧美综合图片区 | 国产超碰人人爽人人做人人添 | 熟女少妇人妻中文字幕 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 国产精品久久久久久久9999 | 东京热无码av男人的天堂 | 99久久精品午夜一区二区 | 精品国产国产综合精品 | 在线 国产 欧美 亚洲 天堂 | 少妇无套内谢久久久久 | 久久精品人人做人人综合试看 | 色婷婷久久一区二区三区麻豆 | 国产精品第一区揄拍无码 | 任你躁国产自任一区二区三区 | 国产精品鲁鲁鲁 | 国产人妻精品午夜福利免费 | 午夜理论片yy44880影院 | 亚洲娇小与黑人巨大交 | 丰满少妇人妻久久久久久 | 亚洲国产成人av在线观看 | 亚洲国产精品无码一区二区三区 | 国产精品无码一区二区桃花视频 | 欧美黑人巨大xxxxx | 1000部啪啪未满十八勿入下载 | 国产深夜福利视频在线 | 97夜夜澡人人爽人人喊中国片 | 东北女人啪啪对白 | 蜜桃av抽搐高潮一区二区 | 无码一区二区三区在线观看 | 久久久久亚洲精品中文字幕 | 一本无码人妻在中文字幕免费 | 日本爽爽爽爽爽爽在线观看免 | 中文精品久久久久人妻不卡 | 亚洲熟妇色xxxxx亚洲 | 俺去俺来也www色官网 | 在教室伦流澡到高潮hnp视频 | 国产精品久免费的黄网站 | 又大又黄又粗又爽的免费视频 | 亚洲大尺度无码无码专区 | 1000部啪啪未满十八勿入下载 | 国产精品久久久久无码av色戒 | 亚洲日本一区二区三区在线 | 少妇人妻偷人精品无码视频 | 午夜丰满少妇性开放视频 | 少妇的肉体aa片免费 | 精品国产福利一区二区 | 亚洲 a v无 码免 费 成 人 a v | 天天爽夜夜爽夜夜爽 | 老司机亚洲精品影院无码 | 国产亚洲精品久久久久久 | 国产午夜视频在线观看 | 日本精品少妇一区二区三区 | 亚洲日韩乱码中文无码蜜桃臀网站 | 丰满护士巨好爽好大乳 | 三上悠亚人妻中文字幕在线 | 人妻少妇精品无码专区动漫 | 台湾无码一区二区 | 天天综合网天天综合色 | 97精品国产97久久久久久免费 | 国产黄在线观看免费观看不卡 | 亚洲国产精品久久久久久 | 亚洲欧美色中文字幕在线 | 白嫩日本少妇做爰 | 国产小呦泬泬99精品 | 久久久久成人精品免费播放动漫 | 免费男性肉肉影院 | 日韩精品一区二区av在线 | 人人妻人人澡人人爽欧美一区九九 | 亚洲の无码国产の无码步美 | 狠狠色欧美亚洲狠狠色www | 亚洲精品久久久久中文第一幕 | 久久久精品人妻久久影视 | 成人无码影片精品久久久 | 国产午夜无码精品免费看 | 国产在线aaa片一区二区99 | 欧美国产亚洲日韩在线二区 | 无码任你躁久久久久久久 | 亚洲日韩中文字幕在线播放 | 精品久久久久久亚洲精品 | 久久久久久久女国产乱让韩 | 亚洲国产精品久久久久久 | 国产黑色丝袜在线播放 | 久久久www成人免费毛片 | 国产精品资源一区二区 | 欧美zoozzooz性欧美 | 国产午夜无码视频在线观看 | 久久天天躁夜夜躁狠狠 | 亚洲精品一区二区三区婷婷月 | 四虎永久在线精品免费网址 | 无码免费一区二区三区 | 免费看男女做好爽好硬视频 | 水蜜桃色314在线观看 | 欧美人与禽zoz0性伦交 | 在线观看国产一区二区三区 | 国产成人综合在线女婷五月99播放 | 在线看片无码永久免费视频 | 国产成人无码专区 | 亚洲国产精品成人久久蜜臀 | 精品熟女少妇av免费观看 | 撕开奶罩揉吮奶头视频 | 国产精品亚洲一区二区三区喷水 | 久久人妻内射无码一区三区 | 亚洲一区av无码专区在线观看 | 国产麻豆精品精东影业av网站 | 久久精品国产一区二区三区肥胖 | 大色综合色综合网站 | 波多野结衣乳巨码无在线观看 | 国产人妻人伦精品 | 中文字幕精品av一区二区五区 | 国产乱人伦偷精品视频 | 亚洲精品国偷拍自产在线观看蜜桃 | 少妇高潮一区二区三区99 | 色综合久久久无码中文字幕 | 男女爱爱好爽视频免费看 | 人妻夜夜爽天天爽三区 | 精品一区二区不卡无码av | 女人高潮内射99精品 | 人妻aⅴ无码一区二区三区 | 亚洲春色在线视频 | 99久久精品日本一区二区免费 | 亚洲精品成人福利网站 | 无码av免费一区二区三区试看 | 人妻中文无码久热丝袜 | 国产精品久久精品三级 | 精品一区二区不卡无码av | av无码久久久久不卡免费网站 | 国产人妻精品一区二区三区不卡 | 在线播放免费人成毛片乱码 | 婷婷五月综合缴情在线视频 | 日本饥渴人妻欲求不满 | 麻豆国产人妻欲求不满谁演的 | 亚洲gv猛男gv无码男同 | 亚洲精品成人福利网站 | 国内揄拍国内精品少妇国语 | 搡女人真爽免费视频大全 | 国产一区二区三区四区五区加勒比 |