poj3070 Fibonacci 矩阵快速幂
Fibonacci
| Time Limit: 1000MS | ? | Memory Limit: 65536K |
| Total Submissions: 18084 | ? | Accepted: 12572 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number ?1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1Sample Output
0 34 626 6875Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
Stanford Local 2006
?
?
矩陣快速冪的知識
點(diǎn)擊打開鏈接
?
#include<iostream> using namespace std; typedef long long ll; const int MOD=1e4; #define mod(x) ((x)%MOD) struct mat{ int m[2][2]; }unit; mat operator *(mat a,mat b) {mat ret;ll x;for(int i=0;i<2;i++)for(int j=0;j<2;j++){x=0;for(int k=0;k<2;k++)x+=mod( (ll) (a.m[i][k]*b.m[k][j]) );ret.m[i][j]=mod(x);}return ret; } void init_unit() {for(int i=0;i<2;i++)unit.m[i][i]=1;//單位矩陣,主對角線上元素為1,其余元素為0return; } mat pow_mat(mat a,ll n) {mat ret=unit;while(n){if(n&1) ret=ret*a;a=a*a;n>>=1;}return ret; } int main() {ios::sync_with_stdio(false);ll n;init_unit();while(cin>>n&&n!=-1){mat a;a.m[0][0]=a.m[0][1]=a.m[1][0]=1;a.m[1][1]=0;a=pow_mat(a,n);cout<<a.m[0][1]<<endl;}return 0; }?
總結(jié)
以上是生活随笔為你收集整理的poj3070 Fibonacci 矩阵快速幂的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: HDU1007 Quoit Desi
- 下一篇: Fibonacci数列 矩阵快速幂