2tanα/(1一tan方α)=一2√2昨变√2tanα=一2(1一tan方α)
生活随笔
收集整理的這篇文章主要介紹了
2tanα/(1一tan方α)=一2√2昨变√2tanα=一2(1一tan方α)
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
To simplify the equation 2tanα/(1-tan2α) = 1 - 2√2, we can start by substituting the given value for tanα:
2√2tanα = 1 - 2√2(1 - tan2α)
Next, we can expand the right side of the equation:
2√2tanα = 1 - 2√2 + 2√2tan2α
Now, let's move all the terms to one side of the equation:
2√2tanα - 2√2tan2α = 1 - 2√2
Factor out common terms:
2√2(tanα - tan2α) = 1 - 2√2
Divide both sides by 2√2:
tanα - tan2α = (1 - 2√2)/(2√2)
Simplify the right side:
tanα - tan2α = (1/√2 - 1)
Since tanα = sinα/cosα and tan2α = sin2α/cos2α, we can rewrite the equation as:
sinα/cosα - sin2α/cos2α = (1/√2 - 1)
To simplify further, let's find a common denominator for the terms:
(cos2α*sinα - sin2α) / cos2α = (1/√2 - 1)
Using the identity cos2α + sin2α = 1, we can substitute cos2α with 1 - sin2α:
(sinα*(1-sin2α) - sin2α) / (1 - sin2α) = (1/√2 - 1)
Distribute the sinα:
sinα - sin3α - sin2α = (1/√2 - 1)(1 - sin2α)
Combine like terms:
sinα(1 - sin2α) - sin2α = (1/√2 - 1)(1 - sin2α)
Simplify the left side:
sinα - sin3α - sin2α = (1/√2 - 1)(1 - sin2α)
Now, let's distribute the (1/√2 - 1):
sinα - sin3α - sin2α = 1/√2 - 1 - (1/√2 - 1)sin2α
Simplify further:
sinα - sin3α - sin2α = 1/√2 - 1 - 1/√2 + 1)(1 - sin2α)
Combine like terms:
sinα - sin3α - sin2α = 1/√2 - 1/√2 + 1 - sin2α
Simplify the right side:
sinα - sin3α - sin2α = 1 - sin2α
Now, let's cancel out the sin2α terms from both sides:
sinα - sin3α = 1
This is the simplified form of the equation.
總結(jié)
以上是生活随笔為你收集整理的2tanα/(1一tan方α)=一2√2昨变√2tanα=一2(1一tan方α)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: √2tanα=一2(1一tan方α)昨变
- 下一篇: 香肠派对新手快速上分指南