√2tanα=一2(1一tan方α)昨变2tan方α一(√2)tanα一2=0
生活随笔
收集整理的這篇文章主要介紹了
√2tanα=一2(1一tan方α)昨变2tan方α一(√2)tanα一2=0
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
To solve this equation, let's rewrite it step by step:
1. √2tanα = 1/2(1 - tan2α)
2. Simplify the right side:
√2tanα = 1/2 - 1/2tan2α
3. Multiply both sides by 2 to eliminate the fraction:
2√2tanα = 1 - tan2α
4. Rearrange the terms:
tan2α + 2√2tanα - 1 = 0
Now we have a quadratic equation in terms of tanα. To solve this equation, we can use the quadratic formula:
tanα = (-b ± √(b2 - 4ac))/(2a)
Where a = 1, b = 2√2, and c = -1. Plugging in these values and simplifying gives us:
tanα = (-2√2 ± √(8 + 4))/2
tanα = (-2√2 ± √12)/2
tanα = -√2 ± √3
Therefore, there are two possible solutions for α:
α = arctan(-√2 + √3)
α = arctan(-√2 - √3)
總結
以上是生活随笔為你收集整理的√2tanα=一2(1一tan方α)昨变2tan方α一(√2)tanα一2=0的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 虹润溶解氧在线监测仪有哪些亮点?
- 下一篇: 2tanα/(1一tan方α)=一2√2