到底什么是算力?
算力的字面意思,大家都懂,就是計算能力(Computing Power)。
所謂“計算”,我們可以有多種定義。
狹義的定義,是對數學問題進行運算的過程,例如完成“1+1=?”的過程,或者對“哥德巴赫猜想”進行推理的過程。
廣義的定義,則更為宏觀,凡是對信息進行處理并得到結果的過程,都可以稱為“計算”。
很顯然,狹義和廣義定義的區別,主要是計算的內容不同。而完成計算過程的能力,都可以稱之為“算力”。
事實上,人類的思考,就是一個最常見的計算過程。
我們除了睡覺和發呆的時間之外,每時每刻都在進行著思考。我們通過五官對外界信息進行觀察、感知和收集。然后,借助大腦,對這些信息進行處理(也就是思考)。最后,得出結論,做出判斷,并采取行動。
在這個過程中,大腦就是我們的算力工具。而大腦的思考能力,就是算力。大腦的思考速度越快,意味著算力越強。
計算是人類解決問題的一種方式。
在漫長的歷史長河中,人類遇到過很多問題,都需要通過計算來解決。這些計算任務,僅憑大腦這個“原生”算力工具,是無法完成的。于是,人類發明了很多算力工具和方法,滿足計算需求。例如算盤、算籌、計算尺等。
20 世紀 40 年代,在技術的不斷積累下,電子計算機誕生,信息技術革命正式開啟。
早期的計算機,其實就是一個大型計算器,主要用于軍事領域的復雜計算任務(例如彈道計算)。它的性能并不算強,而且體積和功耗巨大。后來,晶體管被發明出來,取代了真空管,才逐漸解決了體積和功耗的問題。
1958 年,集成電路問世,正式開創了芯片時代。芯片里面擁有大量的電子元件(例如晶體管、電阻、電容等),可以執行運算指令。近幾十年以來,在摩爾定律的支配下,芯片上的晶體管數量不斷增加,性能也不斷提升。
在芯片能力的加持下,計算機變得越來越強大,體型也越來越小,最終催生了 PC,以及繁榮的 IT 軟硬件生態。計算機開始走入家庭和行業,并最終成為人類最重要的算力工具。
我們將計算機應用于各個領域,用它來運行程序、解決問題、提升效率。芯片的制程越先進,晶體管數量越多,算力就越強勁,問題就能解決得更快更好。
如今,芯片已經成為了算力的代名詞。我們討論算力,其實就是在說芯片的計算能力。
通常來說,行業里傾向于將 CPU、GPU 等芯片技術及能力,稱為狹義的算力。內存、硬盤相關的存儲技術,稱為存力。操作系統、數據庫、中間件、應用程序等在內的軟件技術,稱為算法。
廣義的算力,既包括了狹義的算力,也包括了存力和算法。
云計算、大數據、人工智能、區塊鏈等前沿概念,都屬于算力的應用。換言之,和信息技術有關的一切,都可以籠統稱為算力領域。
我們還需要注意,芯片是算力的核心,而安裝了芯片的手機、手表、PC 等終端,以及服務器等設備,是算力的載體。擁有大量服務器的數據中心,還有計算集群,我們也可以稱為算力平臺。它們就是算力的主要存在形式。
█ 算力的價值
算力的作用,是完成計算任務。
大家都知道,計算機硬件系統的運轉,以及程序軟件的執行,是由無數個計算任務支撐起來的。因此,芯片所提供的算力,就是整個系統正常工作的動力來源。
信息技術經過多年的普及,已經遍布我們工作和生活的各個角落。各種各樣的 IT 系統,支撐著整個社會的發展。算力支撐了所有的 IT 系統,而 IT 系統支撐了整個社會。從這個角度來說,將算力譽為社會發展的基石,也不為過。
在生活方面,我們的衣食住行、娛樂休閑,離不開手機,也離不開移動互聯網。我們的手機是里面的芯片在提供算力,這樣才有豐富的功能,流暢的速度。
我們訪問的數字電商,玩的網絡游戲,看的電影視頻,都是基于互聯網服務提供商的服務。這些服務都構建在數據中心和服務器上,也是芯片在提供算力。算力越強,服務體驗就越好,我們的生活才會更方便,也更快樂。
在工作方面,現在各行各業都在推動數字化轉型,將先進的 IT 技術和通信技術與傳統行業相結合。
數字化是信息化的進一步延伸。以往的信息化,只是在一些特定的業務上引入 IT 技術。而數字化,是面向整個企業的改造。包括組織架構、業務流程、商業模式和工作場景,都是數字化轉型改造的對象。
數字化的目的,是提升生產效率,降低成本,增強企業的綜合競爭力。
無論是信息化,還是數字化,背后都是算力在進行驅動。算力越強,系統的能力就越強,帶來的改進就越大,收益越多。
部分企業,已經在信息化和數字化的基礎上,向智能化的方向發展。這樣帶來的效率提升就會更大,形成“代差”級的技術優勢。在未來日益激烈的市場競爭中,這種優勢可以決定企業的生死。
現在行業里比較流行一種說法,將所有的商業模式,都向“挖掘數據價值”的方向靠攏。
數據被視為最寶貴的資源,是一座富礦。而算力則被視為是挖這座礦的工具。通過算力對數據進行處理,就能挖掘巨大的數據價值,創造財富。
挖掘數據價值的過程,被細分為產生數據、傳輸數據、存儲數據和計算數據等四個環節。算力(信息技術)和聯接力(通信技術),相互協作,可以完成這一過程:
首先,我們通過傳感器、攝像頭等設備,采集物理世界的信息,將其轉換成數字比特。然后,再通過 5G、Wi-Fi、光纖等通信技術,對其進行傳輸搬運。這些數字比特被保存在硬盤等存儲介質中,然后交給芯片進行計算。計算得出的結果,又被應用于決策和控制。
在人工智能技術的加持下,做出決策和進行控制的主角,甚至可能不再是我們人類,而是 AI 智能體。
看明白了吧,算力的作用,在數據價值挖掘的過程中顯露無疑。沒有強大的算力,你就完成不了這項極有前途的工作。
算力的重要價值,也體現在國家競爭力層面。
算力決定了數字經濟發展速度,以及社會智能發展高度。根據 IDC、浪潮信息、清華大學全球產業研究院聯合發布的數據顯示,計算力指數平均每提高 1 點,數字經濟和 GDP 將分別增長 3.5‰和 1.8‰。
全球各國的算力規模與經濟發展水平,已經呈現出顯著的正相關關系。一個國家的算力規模越大,經濟發展水平就越高。
毫不夸張地說,算力已經成為國家競爭力的一個重要組成部分。
█ 算力的分類
算力服務于整個社會。而社會對算力的需求是存在差異的。這些算力需求,既有來自消費領域的(移動互聯網、追劇、網購、打車、O2O 等),也有來自行業領域的(工業制造、交通物流、金融證券、教育醫療等),還有來自城市治理領域的(智慧城市、一證通、城市大腦等)。
不同的算力應用和需求,有著不同的算法。不同的算法,對算力的特性也有不同要求。
如今,我們將算力分為三大類,分別是通用算力、智能算力以及超算算力。
通用算力以 CPU(Central Processing Unit,中央處理器)輸出的計算能力為主。CPU 內部有指令集,對運算進行指導和優化,確保了 CPU 的可靠運行。
按指令集架構的不同,CPU 可以分為 x86 架構與非 x86 架構。X86 架構大家都比較熟悉,是英特爾(Intel)公司首先開發并長期主導的,具有比較好的生態,市場占有率也比較高。非 x86 架構的類型比較多,這些年崛起速度很快,主要有 x86、ARM、MIPS、Power、RISC-V、Alpha 等。
智能算力以 GPU(Graphics Processing Unit,圖形處理器)、FPGA(Field ProgrammableGate Array,現場可編程邏輯門陣列)、AI(Artificial lntelligence,人工智能)芯片等輸出的計算能力為主。尤其是 GPU,目前可以說是炙手可熱,一卡難求。
超算算力,則是以超級計算機輸出的計算能力為主。它利用并行工作的多臺計算機系統的集中式計算資源,并通過專用的操作系統來處理極端復雜的或數據密集型的問題,主要應用于尖端科研、國防軍工等高精尖領域,價格極為昂貴,但性能也極為強勁。
在數據中心里,也對算力任務進行了對應劃分,分為基礎通用計算,以及 HPC 高性能計算(High-performance computing)。
HPC 計算,又繼續細分為三類,分別是:
科學計算類:物理化學、氣象環保、生命科學、石油勘探、天文探測等。
工程計算類:計算機輔助工程、計算機輔助制造、電子設計自動化、電磁仿真等。
智能計算類:即人工智能計算,包括:機器學習、深度學習、數據分析等。
科學計算和工程計算大家應該都聽說過,這些專業科研領域的數據產生量很大,對算力的要求極高。
以油氣勘探為例。油氣勘探,簡單來說,就是給地表做 CT。一個項目下來,原始數據往往超過 100TB,甚至可能超過 1 個 PB。如此巨大的數據量,需要海量的算力進行支撐。
智能計算這幾年非常火,是全社會重點關注的發展方向。在 AIGC 大模型的帶動下,各個行業都在大力發展智能計算,對智能產生了極大需求。
我們平常提到的數據中心,根據算力類型的不同,通常分為通用數據中心、智能中心和超算中心。
大家平時主要使用的互聯網服務,來自通用數據中心。智算中心是專門進行智能計算的數據中心。超算中心專門承擔各種大規模科學計算和工程計算任務,放的都是“天河一號”這樣的超級計算機。
在算力單元上,現在根據任務分工的不同,也有了更細的劃分。除了剛才提到的 CPU、GPU 之外,這幾年陸續出現了 TPU、NPU 和 DPU 等,也是有特定計算任務的專用計算單元。
█ 算力的趨勢
算力和聯接力是數字生產力的重要組成部分。這些年來,隨著信息化、數字化和智能化的不斷深入,整個社會對算力產生了強烈的需求。
在需求的推動下,算力的發展也出現了以下幾個趨勢:
算力需求持續增長
萬物智聯時代的到來,大量智能物聯網終端的引入,行業數字化轉型的推進,加上 AI 智能場景的落地,將產生難以想象的海量數據。這些數據,將進一步刺激對算力的需求。
根據羅蘭貝格的預測,從 2018 年到 2030 年,自動駕駛對算力的需求將增加 390 倍,智慧工廠需求將增長 110 倍,主要國家人均算力需求將從今天的不足 500 GFLOPS,增加 20 倍,變成 2035 年的 10000 GFLOPS。
根據浪潮人工智能研究院的預測,到 2025 年,全球算力規模將達 6.8 ZFLOPS,與 2020 年相比提升 30 倍。
想要滿足這樣龐大的算力需求,需要向以下幾個方面努力。
首先,不斷提升芯片本身的制程,集成更多的晶體管,提升芯片單點算力。經過幾十年的發展,摩爾定律目前已經逐漸走向物理瓶頸,芯片工藝制程逼近 1nm,后續可以提升的空間十分有限,付出的代價也會更大。
其次,建設大量的算力基礎設施,例如數據中心等。通過規模化,滿足全社會的算力需求。
最后,通過東數西算和算力網絡等新的算力服務模式,加強算力的有效利用率,以此適當緩解算力需求增長的壓力。
算力類型加速轉變
前文介紹算力分類的時候,提到算力分為通用算力、智算算力和超算算力三種類型。
事實上,這種分類是最近幾年才開始逐漸形成的。通用算力在算力需求中占主導地位。但是,現在隨著 AIGC 大模型等人工智能技術的飛速發展,智算算力的占比開始迅速攀升。
根據中國信通院發布的《中國綜合算力指數(2023 年)》顯示,在目前算力規模中,通用算力規模占比達 74%;智能算力規模占比達 25%。智算算力雖然占比仍少于通用算力,但增速極快,同比上年增加了 45%。這一增速也比總體算力增速更高。
換言之,AIGC 大模型的發展,顯著推動了智算算力的需求。算力領域的整體架構正在發生變化,智能算力需求正呈現爆發式增長態勢。
這也意味著,在后續的算力基礎設施建設中,智算中心的建設比例將顯著增加。智算產業的發展也將進入一個黃金發展期。
算力服務泛在流動
早期的大型機時代,算力以集中化的方式提供服務。PC 出現后,算力開始進入用戶側。上世紀 90 年代手機和互聯網的流行,打破了算力的空間固定,開始“移動”起來。
在移動芯片的不斷迭代升級下,用戶手機終端的算力不斷增長,幾乎可以和 PC 芯片相提并論。
另一方面,基于 5G、Wi-Fi 等移動通信技術的發展,萬物開始互聯。終端的類型開始變得越來越多,并且也都具備或大或小的算力,具備端計算的能力。
云計算崛起之后,算力開始云化,分布化。邊緣計算出現,算力還從云端下沉到通信網絡的各個層級。
這一切,都標志著算力開始流動,遍布于云管端的各個角落。這就是算力泛在化。
剛才提到的算力網絡,其實也是算力泛在化的一種體現。
算力設施綠色低碳
算力支撐了整個社會的發展,但是,它所帶來的能耗問題,也日益顯現。
根據數據顯示,2021 年全國數據中心總用電量為 2166 億千瓦時,占全國總用電量的 2.6%,相當于 2 個三峽水電站的年發電量,1.8 個北京地區的總用電量。
如此恐怖的耗電量,對我們實現“雙碳”目標造成了很大壓力,也嚴重影響了世界經濟的可持續發展。于是,想方設法降低算力的能耗,成為整個行業的重點研究方向。
算力的綠色低碳,有很多種實現途徑。通過基礎理論研究、材料工藝升級、研發技術創新,對算力基礎設施進行功耗控制和改良,是從源頭上進行節能減排的最有效手段。
除此之外,提高可再生能源的占比,減少化石能源的使用,也是算力綠色發展的關鍵。
目前,在算力的各個環節進行節能減排研究,已經取得了初步成果。算力的綠色化發展,整體前景比較非常樂觀。
根據《綠色發展 2030》報告的預測,到 2030 年,全球數字基礎設施能效將提升 100 倍,可再生能源發電量占比超 50%,行業數字化滲透率達到 50%。
新型算力的探索加速
算力需求的不斷增長,對傳統半導體芯片技術形成了巨大壓力。半導體制程進入瓶頸后,越來越多的專家開始研究新的算力技術理論,例如量子計算、光計算、類腦計算等。
量子計算通過利用量子疊加態和量子糾纏態,具有超越經典計算機的計算能力。光子計算(也稱為光學計算)是一種利用光波進行數據處理、數據存儲或數據通信的計算方式。而類腦計算通過模擬大腦的神經網絡和突觸連接,實現了智能的學習和決策能力。
這些新型的算力領域目前都處于研究階段,取得了一些成果,但也面臨著不少困難。
一旦在這些領域有了真正的突破,傳統的算力框架將被徹底顛覆,人類社會又將進入一個全新的發展階段。
好啦,以上就是今天文章的全部內容。感謝大家的耐心閱讀!
本文來自微信公眾號:鮮棗課堂 (ID:xzclasscom),作者:小棗君
廣告聲明:文內含有的對外跳轉鏈接(包括不限于超鏈接、二維碼、口令等形式),用于傳遞更多信息,節省甄選時間,結果僅供參考,所有文章均包含本聲明。
總結
- 上一篇: 消保委:手机“摇一摇”跳转广告侵犯消费者
- 下一篇: gimp改变图片背景颜色的教程