杜教BM模板
找規律的黑科技
用法:先在vector a中放上線性數列的前幾項,就可以很快遞推出任一項
注意:
模板:
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <string> #include <map> #include <set> #include <cassert> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef long long ll; typedef pair<int,int> PII; const ll mod=998244353; ll powmod(ll a,ll b) {ll res=1;a%=mod;assert(b>=0);for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res; } int _,n; namespace linear_seq {const int N=10010;ll res[N],base[N],_c[N],_md[N];vector<int> Md;void mul(ll *a,ll *b,int k) {for(int i = 0 ; i < k + k ; ++i)_c[i]=0;for(int i = 0 ; i < k ;++i)if (a[i])for(int j = 0 ;j < k ;++ j)_c[i+j]=(_c[i+j]+a[i]*b[j])%mod;for (int i=k+k-1;i>=k;i--)if (_c[i])for(int j = 0 ; j<(int ) Md.size() ; ++ j)_c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;for(int i =0 ; i< k ; ++i)a[i]=_c[i];}int solve(ll n,VI a,VI b) {ll ans=0,pnt=0;int k=SZ(a);assert( SZ(a) == SZ(b) );for(int i = 0 ;i < k ; ++ i)_md[k-1-i] = -a[i] ; _md[k] = 1 ;Md.clear() ;for(int i =0 ; i < k ; ++ i)if (_md[i]!=0)Md.push_back(i);for(int i = 0; i< k ;++ i)res[i]=base[i]=0;res[0]=1;while ((1ll<<pnt)<=n)pnt++;for (int p=pnt;p>=0;p--) {mul(res,res,k);if ((n>>p)&1) {for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;for(int j = 0 ;j < (int)Md.size() ; ++ j)res[ Md[j] ]=(res[ Md[j] ]-res[k]*_md[Md[j]])%mod;}}rep(i,0,k) ans=(ans+res[i]*b[i])%mod;if (ans<0) ans+=mod;return ans;}VI BM(VI s) {VI C(1,1),B(1,1);int L=0,m=1,b=1;for(int n= 0 ;n < (int)s.size(); ++ n ) {ll d=0;for(int i =0 ; i < L +1 ;++ i)d=(d+(ll)C[i]*s[n-i])%mod;if (d==0) ++m;else if (2*L<=n) {VI T=C;ll c=mod-d*powmod(b,mod-2)%mod;while (SZ(C)<SZ(B)+m)C.push_back(0);for(int i =0 ; i < (int)B.size(); ++ i)C[i+m]=(C[i+m]+c*B[i])%mod;L=n+1-L; B=T; b=d; m=1;} else {ll c=mod-d*powmod(b,mod-2)%mod;while (SZ(C)<SZ(B)+m)C.push_back(0);for(int i = 0 ;i <(int) B.size() ; ++ i)C[i+m]=(C[i+m]+c*B[i])%mod;++m;}}return C;}ll gao(VI a,ll n) {VI c=BM(a);c.erase(c.begin());for( int i = 0 ; i < (int)c.size( );++i )c[i]=(mod-c[i])%mod;return (ll)solve(n,c,VI(a.begin(),a.begin()+SZ(c)));} }; int main() {long long n;VI a;int N,v;a.push_back(4);a.push_back(12);a.push_back(33);a.push_back(88);a.push_back(232);a.push_back(609);a.push_back(1596);for (;~scanf("%lld",&n);)printf("%lld\n",linear_seq::gao(a,n-1));return 0 ; }輸出公式版
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define rep(i,a,n) for(int i=a;i<n;i++) namespace linear {ll mo=1000000009;vector<ll> v;double a[105][105],del;int k;struct matrix{int n;ll a[50][50];matrix operator * (const matrix & b)const{matrix c;c.n=n;rep(i,0,n)rep(j,0,n)c.a[i][j]=0;rep(i,0,n)rep(j,0,n)rep(k,0,n)c.a[i][j]=(c.a[i][j]+a[i][k]*b.a[k][j]%mo)%mo;return c;}}A;bool solve(int n){rep(i,1,n+1){int t=i;rep(j,i+1,n+1)if(fabs(a[j][i])>fabs(a[t][i]))t=j;if(fabs(del=a[t][i])<1e-6)return false;rep(j,i,n+2)swap(a[i][j],a[t][j]);rep(j,i,n+2)a[i][j]/=del;rep(t,1,n+1)if(t!=i){del=a[t][i];rep(j,i,n+2)a[t][j]-=a[i][j]*del;}}return true;}void build(vector<ll> V){v=V;int n=(v.size()-1)/2;k=n;while(1){rep(i,0,k+1){rep(j,0,k)a[i+1][j+1]=v[n-1+i-j];a[i+1][k+1]=1;a[i+1][k+2]=v[n+i];}if(solve(n+1))break;n--;k--;}A.n=k+1;rep(i,0,A.n)rep(j,0,A.n)A.a[i][j]=0;rep(i,0,A.n)A.a[i][0]=(int)round(a[i+1][A.n+1]);rep(i,0,A.n-2)A.a[i][i+1]=1;A.a[A.n-1][A.n-1]=1;}void formula(){printf("f(n) =");rep(i,0,A.n-1)printf(" (%lld)*f(n-%d) +",A.a[i][0],i+1);printf(" (%lld)\n",A.a[A.n-1][0]);}ll cal(ll n){if(n<v.size())return v[n];n=n-k+1;matrix B,T=A;B.n=A.n;rep(i,0,B.n)rep(j,0,B.n)B.a[i][j]=i==j?1:0;while(n){if(n&1)B=B*T;n>>=1;T=T*T;}ll ans=0;rep(i,0,B.n-1)ans=(ans+v[B.n-2-i]*B.a[i][0]%mo)%mo;ans=(ans+B.a[B.n-1][0])%mo;while(ans<0)ans+=mo;return ans;} } int main(void){vector<ll> V;V.push_back(3);V.push_back(9);V.push_back(20);V.push_back(46);V.push_back(106);V.push_back(244);V.push_back(560);V.push_back(1286);V.push_back(2956);V.push_back(6794);V.push_back(15610);linear::build(V);linear::formula(); // ll n; // while(~scanf("%lld",&n)) // { // printf("%lld\n",linear::cal(n-1)); // }return 0; }求任意模數的BM模板(模數可以為非質數)
#include <bits/stdc++.h>#include<ext/pb_ds/assoc_container.hpp> #include<ext/pb_ds/tree_policy.hpp>//用treeusing namespace __gnu_pbds;using namespace std; typedef long long ll; typedef unsigned long long ul; #define mp make_pair #define pb push_back #define sqr(x) ((x)*(x)) #define sz(x) (int)x.size() #define all(x) x.begin(), x.end() typedef pair<int, int> pii; typedef pair<ll, ll> pll; const int mn = 105; const int mod = 1000000000;int n, m;// given first m items init[0..m-1] and coefficents trans[0..m-1] or // given first 2 *m items init[0..2m-1], it will compute trans[0..m-1] // for you. trans[0..m] should be given as that // init[m] = sum_{i=0}^{m-1} init[i] * trans[i] struct LinearRecurrence {using int64 = long long;using vec = std::vector<int64>;static void extand(vec &a, size_t d, int64 value = 0) {if (d <= a.size()) return;a.resize(d, value);}static vec BerlekampMassey(const vec &s, int64 mod) {std::function<int64(int64)> inverse = [&](int64 a) {return a == 1 ? 1 : (int64) (mod - mod / a) * inverse(mod % a) % mod;};vec A = {1}, B = {1};int64 b = s[0];for (size_t i = 1, m = 1; i < s.size(); ++i, m++) {int64 d = 0;for (size_t j = 0; j < A.size(); ++j) {d += A[j] * s[i - j] % mod;}if (!(d %= mod)) continue;if (2 * (A.size() - 1) <= i) {auto temp = A;extand(A, B.size() + m);int64 coef = d * inverse(b) % mod;for (size_t j = 0; j < B.size(); ++j) {A[j + m] -= coef * B[j] % mod;if (A[j + m] < 0) A[j + m] += mod;}B = temp, b = d, m = 0;} else {extand(A, B.size() + m);int64 coef = d * inverse(b) % mod;for (size_t j = 0; j < B.size(); ++j) {A[j + m] -= coef * B[j] % mod;if (A[j + m] < 0) A[j + m] += mod;}}}return A;}static void exgcd(int64 a, int64 b, int64 &g, int64 &x, int64 &y) {if (!b) x = 1, y = 0, g = a;else {exgcd(b, a % b, g, y, x);y -= x * (a / b);}}static int64 crt(const vec &c, const vec &m) {int n = c.size();int64 M = 1, ans = 0;for (int i = 0; i < n; ++i) M *= m[i];for (int i = 0; i < n; ++i) {int64 x, y, g, tm = M / m[i];exgcd(tm, m[i], g, x, y);ans = (ans + tm * x * c[i] % M) % M;}return (ans + M) % M;}static vec ReedsSloane(const vec &s, int64 mod) {auto inverse = [](int64 a, int64 m) {int64 d, x, y;exgcd(a, m, d, x, y);return d == 1 ? (x % m + m) % m : -1;};auto L = [](const vec &a, const vec &b) {int da = (a.size() > 1 || (a.size() == 1 && a[0])) ? a.size() - 1 : -1000;int db = (b.size() > 1 || (b.size() == 1 && b[0])) ? b.size() - 1 : -1000;return std::max(da, db + 1);};auto prime_power = [&](const vec &s, int64 mod, int64 p, int64 e) {// linear feedback shift register mod p^e, p is primestd::vector<vec> a(e), b(e), an(e), bn(e), ao(e), bo(e);vec t(e), u(e), r(e), to(e, 1), uo(e), pw(e + 1);;pw[0] = 1;for (int i = pw[0] = 1; i <= e; ++i) pw[i] = pw[i - 1] * p;for (int64 i = 0; i < e; ++i) {a[i] = {pw[i]}, an[i] = {pw[i]};b[i] = {0}, bn[i] = {s[0] * pw[i] % mod};t[i] = s[0] * pw[i] % mod;if (t[i] == 0) {t[i] = 1, u[i] = e;} else {for (u[i] = 0; t[i] % p == 0; t[i] /= p, ++u[i]);}}for (size_t k = 1; k < s.size(); ++k) {for (int g = 0; g < e; ++g) {if (L(an[g], bn[g]) > L(a[g], b[g])) {ao[g] = a[e - 1 - u[g]];bo[g] = b[e - 1 - u[g]];to[g] = t[e - 1 - u[g]];uo[g] = u[e - 1 - u[g]];r[g] = k - 1;}}a = an, b = bn;for (int o = 0; o < e; ++o) {int64 d = 0;for (size_t i = 0; i < a[o].size() && i <= k; ++i) {d = (d + a[o][i] * s[k - i]) % mod;}if (d == 0) {t[o] = 1, u[o] = e;} else {for (u[o] = 0, t[o] = d; t[o] % p == 0; t[o] /= p, ++u[o]);int g = e - 1 - u[o];if (L(a[g], b[g]) == 0) {extand(bn[o], k + 1);bn[o][k] = (bn[o][k] + d) % mod;} else {int64 coef = t[o] * inverse(to[g], mod) % mod * pw[u[o] - uo[g]] % mod;int m = k - r[g];extand(an[o], ao[g].size() + m);extand(bn[o], bo[g].size() + m);for (size_t i = 0; i < ao[g].size(); ++i) {an[o][i + m] -= coef * ao[g][i] % mod;if (an[o][i + m] < 0) an[o][i + m] += mod;}while (an[o].size() && an[o].back() == 0) an[o].pop_back();for (size_t i = 0; i < bo[g].size(); ++i) {bn[o][i + m] -= coef * bo[g][i] % mod;if (bn[o][i + m] < 0) bn[o][i + m] -= mod;}while (bn[o].size() && bn[o].back() == 0) bn[o].pop_back();}}}}return std::make_pair(an[0], bn[0]);};std::vector<std::tuple<int64, int64, int>> fac;for (int64 i = 2; i * i <= mod; ++i)if (mod % i == 0) {int64 cnt = 0, pw = 1;while (mod % i == 0) mod /= i, ++cnt, pw *= i;fac.emplace_back(pw, i, cnt);}if (mod > 1) fac.emplace_back(mod, mod, 1);std::vector<vec> as;size_t n = 0;for (auto &&x: fac) {int64 mod, p, e;vec a, b;std::tie(mod, p, e) = x;auto ss = s;for (auto &&x: ss) x %= mod;std::tie(a, b) = prime_power(ss, mod, p, e);as.emplace_back(a);n = std::max(n, a.size());}vec a(n), c(as.size()), m(as.size());for (size_t i = 0; i < n; ++i) {for (size_t j = 0; j < as.size(); ++j) {m[j] = std::get<0>(fac[j]);c[j] = i < as[j].size() ? as[j][i] : 0;}a[i] = crt(c, m);}return a;}LinearRecurrence(const vec &s, const vec &c, int64 mod) :init(s), trans(c), mod(mod), m(s.size()) {}LinearRecurrence(const vec &s, int64 mod, bool is_prime = true) : mod(mod) {vec A;if (is_prime) A = BerlekampMassey(s, mod);else A = ReedsSloane(s, mod);if (A.empty()) A = {0};m = A.size() - 1;trans.resize(m);for (int i = 0; i < m; ++i) {trans[i] = (mod - A[i + 1]) % mod;}std::reverse(trans.begin(), trans.end());init = {s.begin(), s.begin() + m};}int64 calc(int64 n) {if (mod == 1) return 0;if (n < m) return init[n];vec v(m), u(m << 1);int msk = !!n;for (int64 m = n; m > 1; m >>= 1) msk <<= 1;v[0] = 1 % mod;for (int x = 0; msk; msk >>= 1, x <<= 1) {std::fill_n(u.begin(), m * 2, 0);x |= !!(n & msk);if (x < m) u[x] = 1 % mod;else {// can be optimized by fft/nttfor (int i = 0; i < m; ++i) {for (int j = 0, t = i + (x & 1); j < m; ++j, ++t) {u[t] = (u[t] + v[i] * v[j]) % mod;}}for (int i = m * 2 - 1; i >= m; --i) {for (int j = 0, t = i - m; j < m; ++j, ++t) {u[t] = (u[t] + trans[j] * u[i]) % mod;}}}v = {u.begin(), u.begin() + m};}int64 ret = 0;for (int i = 0; i < m; ++i) {ret = (ret + v[i] * init[i]) % mod;}return ret;}vec init, trans;int64 mod;int m; };ll f[25005];ll powmod(ll a, ll b, ll P) {ll t = 1;for (; b; b >>= 1, a = a * a % P)if (b & 1) t = t * a % P;return t; }int main() { #ifdef trote//freopen("in.txt", "r", stdin);freopen("../1.txt", "r", stdin);//freopen("out2.txt", "w", stdout);size_t st = clock(); #endifscanf("%d%d", &n, &m);f[0] = 0;f[1] = 1;for (int i = 2; i <= 25000; i++) {f[i] = (f[i - 1] + f[i - 2]) % mod;}vector<ll> v;ll S = 0;for (int i = 0; i < 900; i++) {S = (S + powmod(f[i], m, mod)) % mod;v.pb(S);}LinearRecurrence solver(v, mod, false);printf("%lld\n", solver.calc(n));return 0; }?
總結
- 上一篇: CodeForces - 1345E Q
- 下一篇: 牛客 - 斐波那契和(杜教BM)