matlab求马尔可夫转移矩阵,matlab – 估计马尔可夫转移矩阵的置信区间
您可以使用
bootstrapping估計
confidence intervals.MATLAB在統計工具箱中提供
bootci功能.這是一個例子:
%# generate a random cell array of 400 sequences of varying length
%# each containing indices from 1 to 5 corresponding to ACGTE
sequences = arrayfun(@(~) randi([1 5], [1 randi([500 1000])]), 1:400, ...
'UniformOutput',false)';
%# compute transition matrix from all sequences
trans = countFcn(sequences);
%# number of bootstrap samples to draw
Nboot = 1000;
%# estimate 95% confidence interval using bootstrapping
ci = bootci(Nboot, {@countFcn, sequences}, 'alpha',0.05);
ci = permute(ci, [2 3 1]);
我們得到:
>> trans %# 5x5 transition matrix: P_hat
trans =
0.19747 0.2019 0.19849 0.2049 0.19724
0.20068 0.19959 0.19811 0.20233 0.19928
0.19841 0.19798 0.2021 0.2012 0.20031
0.20077 0.19926 0.20084 0.19988 0.19926
0.19895 0.19915 0.19963 0.20139 0.20088
和另外兩個類似的矩陣,包含置信區間的下限和上限:
>> ci(:,:,1) %# CI lower bound
>> ci(:,:,2) %# CI upper bound
我使用以下函數從一組序列計算轉換矩陣:
function trans = countFcn(seqs)
%# accumulate transition matrix from all sequences
trans = zeros(5,5);
for i=1:numel(seqs)
trans = trans + sparse(seqs{i}(1:end-1), seqs{i}(2:end), 1, 5,5);
end
%# normalize into proper probabilities
trans = bsxfun(@rdivide, trans, sum(trans,2));
end
作為獎勵,我們可以使用bootstrp函數來獲取從每個bootstrap樣本計算的統計量,我們使用它來顯示轉換矩陣中每個條目的直方圖:
%# compute multiple transition matrices using bootstrapping
stat = bootstrp(Nboot, @countFcn, sequences);
%# display histogram for each entry in the transition matrix
sub = reshape(1:5*5,5,5);
figure
for i=1:size(stat,2)
subplot(5,5,sub(i))
hist(stat(:,i))
end
總結
以上是生活随笔為你收集整理的matlab求马尔可夫转移矩阵,matlab – 估计马尔可夫转移矩阵的置信区间的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: windows 声音编程之waveout
- 下一篇: 电商染指“产品众筹”,单一众筹平台能否偷