Python 人脸表情识别
生活随笔
收集整理的這篇文章主要介紹了
Python 人脸表情识别
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
人臉表情識別
- 一、圖片預處理
- 二、數據集劃分
- 三、識別笑臉
- 四、Dlib提取人臉特征識別笑臉和非笑臉
- 參考
🧐
首先,推薦一個不錯的人工智能與機器學習網站,通俗易懂,風趣幽默,
網站鏈接: captainai.net 🔑
環境搭建可查看Python人臉識別微笑檢測
數據集可在https://inc.ucsd.edu/mplab/wordpress/index.html%3Fp=398.html獲取
數據如下:
一、圖片預處理
import dlib # 人臉識別的庫dlib import numpy as np # 數據處理的庫numpy import cv2 # 圖像處理的庫OpenCv import os# dlib預測器 detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')# 讀取圖像的路徑 path_read = ".\ImageFiles\\files" num=0 for file_name in os.listdir(path_read):#aa是圖片的全路徑aa=(path_read +"/"+file_name)#讀入的圖片的路徑中含非英文img=cv2.imdecode(np.fromfile(aa, dtype=np.uint8), cv2.IMREAD_UNCHANGED)#獲取圖片的寬高img_shape=img.shapeimg_height=img_shape[0]img_width=img_shape[1]# 用來存儲生成的單張人臉的路徑path_save=".\ImageFiles\\files1" # dlib檢測dets = detector(img,1)print("人臉數:", len(dets))for k, d in enumerate(dets):if len(dets)>1:continuenum=num+1# 計算矩形大小# (x,y), (寬度width, 高度height)pos_start = tuple([d.left(), d.top()])pos_end = tuple([d.right(), d.bottom()])# 計算矩形框大小height = d.bottom()-d.top()width = d.right()-d.left()# 根據人臉大小生成空的圖像img_blank = np.zeros((height, width, 3), np.uint8)for i in range(height):if d.top()+i>=img_height:# 防止越界continuefor j in range(width):if d.left()+j>=img_width:# 防止越界continueimg_blank[i][j] = img[d.top()+i][d.left()+j]img_blank = cv2.resize(img_blank, (200, 200), interpolation=cv2.INTER_CUBIC)cv2.imencode('.jpg', img_blank)[1].tofile(path_save+"\\"+"file"+str(num)+".jpg") # 正確方法
運行結果:
二、數據集劃分
import os, shutil # 原始數據集路徑 original_dataset_dir = '.\ImageFiles\\files1'# 新的數據集 base_dir = '.\ImageFiles\\files2' os.mkdir(base_dir)# 訓練圖像、驗證圖像、測試圖像的目錄 train_dir = os.path.join(base_dir, 'train') os.mkdir(train_dir) validation_dir = os.path.join(base_dir, 'validation') os.mkdir(validation_dir) test_dir = os.path.join(base_dir, 'test') os.mkdir(test_dir)train_cats_dir = os.path.join(train_dir, 'smile') os.mkdir(train_cats_dir)train_dogs_dir = os.path.join(train_dir, 'unsmile') os.mkdir(train_dogs_dir)validation_cats_dir = os.path.join(validation_dir, 'smile') os.mkdir(validation_cats_dir)validation_dogs_dir = os.path.join(validation_dir, 'unsmile') os.mkdir(validation_dogs_dir)test_cats_dir = os.path.join(test_dir, 'smile') os.mkdir(test_cats_dir)test_dogs_dir = os.path.join(test_dir, 'unsmile') os.mkdir(test_dogs_dir)# 復制1000張笑臉圖片到train_c_dir fnames = ['file{}.jpg'.format(i) for i in range(1,900)] for fname in fnames:src = os.path.join(original_dataset_dir, fname)dst = os.path.join(train_cats_dir, fname)shutil.copyfile(src, dst)fnames = ['file{}.jpg'.format(i) for i in range(900, 1350)] for fname in fnames:src = os.path.join(original_dataset_dir, fname)dst = os.path.join(validation_cats_dir, fname)shutil.copyfile(src, dst)# Copy next 500 cat images to test_cats_dir fnames = ['file{}.jpg'.format(i) for i in range(1350, 1800)] for fname in fnames:src = os.path.join(original_dataset_dir, fname)dst = os.path.join(test_cats_dir, fname)shutil.copyfile(src, dst)fnames = ['file{}.jpg'.format(i) for i in range(2127,3000)] for fname in fnames:src = os.path.join(original_dataset_dir, fname)dst = os.path.join(train_dogs_dir, fname)shutil.copyfile(src, dst)# Copy next 500 dog images to validation_dogs_dir fnames = ['file{}.jpg'.format(i) for i in range(3000,3304)] for fname in fnames:src = os.path.join(original_dataset_dir, fname)dst = os.path.join(validation_dogs_dir, fname)shutil.copyfile(src, dst)# # Copy next 500 dog images to test_dogs_dir # fnames = ['file{}.jpg'.format(i) for i in range(3000,3878)] # for fname in fnames: # src = os.path.join(original_dataset_dir, fname) # dst = os.path.join(test_dogs_dir, fname) # shutil.copyfile(src, dst)運行結果:
三、識別笑臉
- 模式構建:
- 進行歸一化
- 增強數據
- 創建網絡:
- 單張圖片測試:
- 攝像頭測試:
運行結果:
四、Dlib提取人臉特征識別笑臉和非笑臉
import cv2 # 圖像處理的庫 OpenCv import dlib # 人臉識別的庫 dlib import numpy as np # 數據處理的庫 numpy class face_emotion():def __init__(self):self.detector = dlib.get_frontal_face_detector()self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")self.cap = cv2.VideoCapture(0)self.cap.set(3, 480)self.cnt = 0 def learning_face(self):line_brow_x = []line_brow_y = []while(self.cap.isOpened()):flag, im_rd = self.cap.read()k = cv2.waitKey(1)# 取灰度img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY) faces = self.detector(img_gray, 0)font = cv2.FONT_HERSHEY_SIMPLEX# 如果檢測到人臉if(len(faces) != 0):# 對每個人臉都標出68個特征點for i in range(len(faces)):for k, d in enumerate(faces):cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0,0,255))self.face_width = d.right() - d.left()shape = self.predictor(im_rd, d)mouth_width = (shape.part(54).x - shape.part(48).x) / self.face_width mouth_height = (shape.part(66).y - shape.part(62).y) / self.face_widthbrow_sum = 0 frown_sum = 0 for j in range(17, 21):brow_sum += (shape.part(j).y - d.top()) + (shape.part(j + 5).y - d.top())frown_sum += shape.part(j + 5).x - shape.part(j).xline_brow_x.append(shape.part(j).x)line_brow_y.append(shape.part(j).y)tempx = np.array(line_brow_x)tempy = np.array(line_brow_y)z1 = np.polyfit(tempx, tempy, 1) self.brow_k = -round(z1[0], 3) brow_height = (brow_sum / 10) / self.face_width # 眉毛高度占比brow_width = (frown_sum / 5) / self.face_width # 眉毛距離占比eye_sum = (shape.part(41).y - shape.part(37).y + shape.part(40).y - shape.part(38).y + shape.part(47).y - shape.part(43).y + shape.part(46).y - shape.part(44).y)eye_hight = (eye_sum / 4) / self.face_widthif round(mouth_height >= 0.03) and eye_hight<0.56:cv2.putText(im_rd, "smile", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 2,(0,255,0), 2, 4)if round(mouth_height<0.03) and self.brow_k>-0.3:cv2.putText(im_rd, "unsmile", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 2,(0,255,0), 2, 4)cv2.putText(im_rd, "Face-" + str(len(faces)), (20,50), font, 0.6, (0,0,255), 1, cv2.LINE_AA)else:cv2.putText(im_rd, "No Face", (20,50), font, 0.6, (0,0,255), 1, cv2.LINE_AA)im_rd = cv2.putText(im_rd, "S: screenshot", (20,450), font, 0.6, (255,0,255), 1, cv2.LINE_AA)im_rd = cv2.putText(im_rd, "Q: quit", (20,470), font, 0.6, (255,0,255), 1, cv2.LINE_AA)if (cv2.waitKey(1) & 0xFF) == ord('s'):self.cnt += 1cv2.imwrite("screenshoot" + str(self.cnt) + ".jpg", im_rd)# 按下 q 鍵退出if (cv2.waitKey(1)) == ord('q'):break# 窗口顯示cv2.imshow("Face Recognition", im_rd)self.cap.release()cv2.destroyAllWindows() if __name__ == "__main__":my_face = face_emotion()my_face.learning_face()
運行結果:
參考
Python人臉識別微笑檢測
Python-人臉識別并判斷表情 笑臉或非笑臉 使用笑臉數據集genki4k
總結
以上是生活随笔為你收集整理的Python 人脸表情识别的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 年金计算机在线,年金终值复利计算器在线(
- 下一篇: git push到GitHub的时候遇到