redis 源码 dict.c 实现
生活随笔
收集整理的這篇文章主要介紹了
redis 源码 dict.c 实现
小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
dict.c文件代碼:
#include "fmacros.h"#include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdarg.h> #include <limits.h> #include <sys/time.h> #include <ctype.h>#include "dict.h" #include "zmalloc.h" #include "redisassert.h"/* Using dictEnableResize() / dictDisableResize() we make possible to* enable/disable resizing of the hash table as needed. This is very important* for Redis, as we use copy-on-write and don't want to move too much memory* around when there is a child performing saving operations.** Note that even when dict_can_resize is set to 0, not all resizes are* prevented: a hash table is still allowed to grow if the ratio between* the number of elements and the buckets > dict_force_resize_ratio. */ static int dict_can_resize = 1; static unsigned int dict_force_resize_ratio = 5;/* -------------------------- private prototypes ---------------------------- */static int _dictExpandIfNeeded(dict *ht); static unsigned long _dictNextPower(unsigned long size); static int _dictKeyIndex(dict *ht, const void *key); static int _dictInit(dict *ht, dictType *type, void *privDataPtr);/* -------------------------- hash functions -------------------------------- *//* Thomas Wang's 32 bit Mix Function */ unsigned int dictIntHashFunction(unsigned int key) {key += ~(key << 15);key ^= (key >> 10);key += (key << 3);key ^= (key >> 6);key += ~(key << 11);key ^= (key >> 16);return key; }static uint32_t dict_hash_function_seed = 5381;void dictSetHashFunctionSeed(uint32_t seed) {dict_hash_function_seed = seed; }uint32_t dictGetHashFunctionSeed(void) {return dict_hash_function_seed; }/* MurmurHash2, by Austin Appleby* Note - This code makes a few assumptions about how your machine behaves -* 1. We can read a 4-byte value from any address without crashing* 2. sizeof(int) == 4** And it has a few limitations -** 1. It will not work incrementally.* 2. It will not produce the same results on little-endian and big-endian* machines.*/ unsigned int dictGenHashFunction(const void *key, int len) {/* 'm' and 'r' are mixing constants generated offline.They're not really 'magic', they just happen to work well. */uint32_t seed = dict_hash_function_seed;const uint32_t m = 0x5bd1e995;const int r = 24;/* Initialize the hash to a 'random' value */uint32_t h = seed ^ len;/* Mix 4 bytes at a time into the hash */const unsigned char *data = (const unsigned char *)key;while(len >= 4) {uint32_t k = *(uint32_t*)data;k *= m;k ^= k >> r;k *= m;h *= m;h ^= k;data += 4;len -= 4;}/* Handle the last few bytes of the input array */switch(len) {case 3: h ^= data[2] << 16;case 2: h ^= data[1] << 8;case 1: h ^= data[0]; h *= m;};/* Do a few final mixes of the hash to ensure the last few* bytes are well-incorporated. */h ^= h >> 13;h *= m;h ^= h >> 15;return (unsigned int)h; }/* And a case insensitive hash function (based on djb hash) */ unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {unsigned int hash = (unsigned int)dict_hash_function_seed;while (len--)hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */return hash; }/* ----------------------------- API implementation ------------------------- *//* Reset a hash table already initialized with ht_init().* NOTE: This function should only be called by ht_destroy(). */ static void _dictReset(dictht *ht) {ht->table = NULL;ht->size = 0;ht->sizemask = 0;ht->used = 0; }/* Create a new hash table */ dict *dictCreate(dictType *type,void *privDataPtr) {dict *d = zmalloc(sizeof(*d));_dictInit(d,type,privDataPtr);return d; }/* Initialize the hash table */ int _dictInit(dict *d, dictType *type,void *privDataPtr) {_dictReset(&d->ht[0]);_dictReset(&d->ht[1]);d->type = type;d->privdata = privDataPtr;d->rehashidx = -1;d->iterators = 0;return DICT_OK; }/* Resize the table to the minimal size that contains all the elements,* but with the invariant of a USED/BUCKETS ratio near to <= 1 */ int dictResize(dict *d) {int minimal;if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;minimal = d->ht[0].used;if (minimal < DICT_HT_INITIAL_SIZE)minimal = DICT_HT_INITIAL_SIZE;return dictExpand(d, minimal); }/* Expand or create the hash table */ int dictExpand(dict *d, unsigned long size) {dictht n; /* the new hash table */unsigned long realsize = _dictNextPower(size);/* the size is invalid if it is smaller than the number of* elements already inside the hash table */if (dictIsRehashing(d) || d->ht[0].used > size)return DICT_ERR;/* Allocate the new hash table and initialize all pointers to NULL */n.size = realsize;n.sizemask = realsize-1;n.table = zcalloc(realsize*sizeof(dictEntry*));n.used = 0;/* Is this the first initialization? If so it's not really a rehashing* we just set the first hash table so that it can accept keys. */if (d->ht[0].table == NULL) {d->ht[0] = n;return DICT_OK;}/* Prepare a second hash table for incremental rehashing */d->ht[1] = n;d->rehashidx = 0;return DICT_OK; }/* Performs N steps of incremental rehashing. Returns 1 if there are still* keys to move from the old to the new hash table, otherwise 0 is returned.* Note that a rehashing step consists in moving a bucket (that may have more* than one key as we use chaining) from the old to the new hash table. */ int dictRehash(dict *d, int n) {if (!dictIsRehashing(d)) return 0;while(n--) {dictEntry *de, *nextde;/* Check if we already rehashed the whole table... */if (d->ht[0].used == 0) {zfree(d->ht[0].table);d->ht[0] = d->ht[1];_dictReset(&d->ht[1]);d->rehashidx = -1;return 0;}/* Note that rehashidx can't overflow as we are sure there are more* elements because ht[0].used != 0 */assert(d->ht[0].size > (unsigned long)d->rehashidx);while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;de = d->ht[0].table[d->rehashidx];/* Move all the keys in this bucket from the old to the new hash HT */while(de) {unsigned int h;nextde = de->next;/* Get the index in the new hash table */h = dictHashKey(d, de->key) & d->ht[1].sizemask;de->next = d->ht[1].table[h];d->ht[1].table[h] = de;d->ht[0].used--;d->ht[1].used++;de = nextde;}d->ht[0].table[d->rehashidx] = NULL;d->rehashidx++;}return 1; }long long timeInMilliseconds(void) {struct timeval tv;gettimeofday(&tv,NULL);return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000); }/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */ int dictRehashMilliseconds(dict *d, int ms) {long long start = timeInMilliseconds();int rehashes = 0;while(dictRehash(d,100)) {rehashes += 100;if (timeInMilliseconds()-start > ms) break;}return rehashes; }/* This function performs just a step of rehashing, and only if there are* no safe iterators bound to our hash table. When we have iterators in the* middle of a rehashing we can't mess with the two hash tables otherwise* some element can be missed or duplicated.** This function is called by common lookup or update operations in the* dictionary so that the hash table automatically migrates from H1 to H2* while it is actively used. */ static void _dictRehashStep(dict *d) {if (d->iterators == 0) dictRehash(d,1); }/* Add an element to the target hash table */ int dictAdd(dict *d, void *key, void *val) {dictEntry *entry = dictAddRaw(d,key);if (!entry) return DICT_ERR;dictSetVal(d, entry, val);return DICT_OK; }/* Low level add. This function adds the entry but instead of setting* a value returns the dictEntry structure to the user, that will make* sure to fill the value field as he wishes.** This function is also directly exposed to user API to be called* mainly in order to store non-pointers inside the hash value, example:** entry = dictAddRaw(dict,mykey);* if (entry != NULL) dictSetSignedIntegerVal(entry,1000);** Return values:** If key already exists NULL is returned.* If key was added, the hash entry is returned to be manipulated by the caller.*/ dictEntry *dictAddRaw(dict *d, void *key) {int index;dictEntry *entry;dictht *ht;if (dictIsRehashing(d)) _dictRehashStep(d);/* Get the index of the new element, or -1 if* the element already exists. */if ((index = _dictKeyIndex(d, key)) == -1)return NULL;/* Allocate the memory and store the new entry */ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];entry = zmalloc(sizeof(*entry));entry->next = ht->table[index];ht->table[index] = entry;ht->used++;/* Set the hash entry fields. */dictSetKey(d, entry, key);return entry; }/* Add an element, discarding the old if the key already exists.* Return 1 if the key was added from scratch, 0 if there was already an* element with such key and dictReplace() just performed a value update* operation. */ int dictReplace(dict *d, void *key, void *val) {dictEntry *entry, auxentry;/* Try to add the element. If the key* does not exists dictAdd will suceed. */if (dictAdd(d, key, val) == DICT_OK)return 1;/* It already exists, get the entry */entry = dictFind(d, key);/* Set the new value and free the old one. Note that it is important* to do that in this order, as the value may just be exactly the same* as the previous one. In this context, think to reference counting,* you want to increment (set), and then decrement (free), and not the* reverse. */auxentry = *entry;dictSetVal(d, entry, val);dictFreeVal(d, &auxentry);return 0; }/* dictReplaceRaw() is simply a version of dictAddRaw() that always* returns the hash entry of the specified key, even if the key already* exists and can't be added (in that case the entry of the already* existing key is returned.)** See dictAddRaw() for more information. */ dictEntry *dictReplaceRaw(dict *d, void *key) {dictEntry *entry = dictFind(d,key);return entry ? entry : dictAddRaw(d,key); }/* Search and remove an element */ static int dictGenericDelete(dict *d, const void *key, int nofree) {unsigned int h, idx;dictEntry *he, *prevHe;int table;if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */if (dictIsRehashing(d)) _dictRehashStep(d);h = dictHashKey(d, key);for (table = 0; table <= 1; table++) {idx = h & d->ht[table].sizemask;he = d->ht[table].table[idx];prevHe = NULL;while(he) {if (dictCompareKeys(d, key, he->key)) {/* Unlink the element from the list */if (prevHe)prevHe->next = he->next;elsed->ht[table].table[idx] = he->next;if (!nofree) {dictFreeKey(d, he);dictFreeVal(d, he);}zfree(he);d->ht[table].used--;return DICT_OK;}prevHe = he;he = he->next;}if (!dictIsRehashing(d)) break;}return DICT_ERR; /* not found */ }int dictDelete(dict *ht, const void *key) {return dictGenericDelete(ht,key,0); }int dictDeleteNoFree(dict *ht, const void *key) {return dictGenericDelete(ht,key,1); }/* Destroy an entire dictionary */ int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {unsigned long i;/* Free all the elements */for (i = 0; i < ht->size && ht->used > 0; i++) {dictEntry *he, *nextHe;if (callback && (i & 65535) == 0) callback(d->privdata);if ((he = ht->table[i]) == NULL) continue;while(he) {nextHe = he->next;dictFreeKey(d, he);dictFreeVal(d, he);zfree(he);ht->used--;he = nextHe;}}/* Free the table and the allocated cache structure */zfree(ht->table);/* Re-initialize the table */_dictReset(ht);return DICT_OK; /* never fails */ }/* Clear & Release the hash table */ void dictRelease(dict *d) {_dictClear(d,&d->ht[0],NULL);_dictClear(d,&d->ht[1],NULL);zfree(d); }dictEntry *dictFind(dict *d, const void *key) {dictEntry *he;unsigned int h, idx, table;if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */if (dictIsRehashing(d)) _dictRehashStep(d);h = dictHashKey(d, key);for (table = 0; table <= 1; table++) {idx = h & d->ht[table].sizemask;he = d->ht[table].table[idx];while(he) {if (dictCompareKeys(d, key, he->key))return he;he = he->next;}if (!dictIsRehashing(d)) return NULL;}return NULL; }void *dictFetchValue(dict *d, const void *key) {dictEntry *he;he = dictFind(d,key);return he ? dictGetVal(he) : NULL; }/* A fingerprint is a 64 bit number that represents the state of the dictionary* at a given time, it's just a few dict properties xored together.* When an unsafe iterator is initialized, we get the dict fingerprint, and check* the fingerprint again when the iterator is released.* If the two fingerprints are different it means that the user of the iterator* performed forbidden operations against the dictionary while iterating. */ long long dictFingerprint(dict *d) {long long integers[6], hash = 0;int j;integers[0] = (long) d->ht[0].table;integers[1] = d->ht[0].size;integers[2] = d->ht[0].used;integers[3] = (long) d->ht[1].table;integers[4] = d->ht[1].size;integers[5] = d->ht[1].used;/* We hash N integers by summing every successive integer with the integer* hashing of the previous sum. Basically:** Result = hash(hash(hash(int1)+int2)+int3) ...** This way the same set of integers in a different order will (likely) hash* to a different number. */for (j = 0; j < 6; j++) {hash += integers[j];/* For the hashing step we use Tomas Wang's 64 bit integer hash. */hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;hash = hash ^ (hash >> 24);hash = (hash + (hash << 3)) + (hash << 8); // hash * 265hash = hash ^ (hash >> 14);hash = (hash + (hash << 2)) + (hash << 4); // hash * 21hash = hash ^ (hash >> 28);hash = hash + (hash << 31);}return hash; }dictIterator *dictGetIterator(dict *d) {dictIterator *iter = zmalloc(sizeof(*iter));iter->d = d;iter->table = 0;iter->index = -1;iter->safe = 0;iter->entry = NULL;iter->nextEntry = NULL;return iter; }dictIterator *dictGetSafeIterator(dict *d) {dictIterator *i = dictGetIterator(d);i->safe = 1;return i; }dictEntry *dictNext(dictIterator *iter) {while (1) {if (iter->entry == NULL) {dictht *ht = &iter->d->ht[iter->table];if (iter->index == -1 && iter->table == 0) {if (iter->safe)iter->d->iterators++;elseiter->fingerprint = dictFingerprint(iter->d);}iter->index++;if (iter->index >= (long) ht->size) {if (dictIsRehashing(iter->d) && iter->table == 0) {iter->table++;iter->index = 0;ht = &iter->d->ht[1];} else {break;}}iter->entry = ht->table[iter->index];} else {iter->entry = iter->nextEntry;}if (iter->entry) {/* We need to save the 'next' here, the iterator user* may delete the entry we are returning. */iter->nextEntry = iter->entry->next;return iter->entry;}}return NULL; }void dictReleaseIterator(dictIterator *iter) {if (!(iter->index == -1 && iter->table == 0)) {if (iter->safe)iter->d->iterators--;elseassert(iter->fingerprint == dictFingerprint(iter->d));}zfree(iter); }/* Return a random entry from the hash table. Useful to* implement randomized algorithms */ dictEntry *dictGetRandomKey(dict *d) {dictEntry *he, *orighe;unsigned int h;int listlen, listele;if (dictSize(d) == 0) return NULL;if (dictIsRehashing(d)) _dictRehashStep(d);if (dictIsRehashing(d)) {do {h = random() % (d->ht[0].size+d->ht[1].size);he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :d->ht[0].table[h];} while(he == NULL);} else {do {h = random() & d->ht[0].sizemask;he = d->ht[0].table[h];} while(he == NULL);}/* Now we found a non empty bucket, but it is a linked* list and we need to get a random element from the list.* The only sane way to do so is counting the elements and* select a random index. */listlen = 0;orighe = he;while(he) {he = he->next;listlen++;}listele = random() % listlen;he = orighe;while(listele--) he = he->next;return he; }/* Function to reverse bits. Algorithm from:* http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */ static unsigned long rev(unsigned long v) {unsigned long s = 8 * sizeof(v); // bit size; must be power of 2unsigned long mask = ~0;while ((s >>= 1) > 0) {mask ^= (mask << s);v = ((v >> s) & mask) | ((v << s) & ~mask);}return v; }/* dictScan() is used to iterate over the elements of a dictionary.** Iterating works the following way:** 1) Initially you call the function using a cursor (v) value of 0.* 2) The function performs one step of the iteration, and returns the* new cursor value you must use in the next call.* 3) When the returned cursor is 0, the iteration is complete.** The function guarantees all elements present in the* dictionary get returned between the start and end of the iteration.* However it is possible some elements get returned multiple times.** For every element returned, the callback argument 'fn' is* called with 'privdata' as first argument and the dictionary entry* 'de' as second argument.** HOW IT WORKS.** The iteration algorithm was designed by Pieter Noordhuis.* The main idea is to increment a cursor starting from the higher order* bits. That is, instead of incrementing the cursor normally, the bits* of the cursor are reversed, then the cursor is incremented, and finally* the bits are reversed again.** This strategy is needed because the hash table may be resized between* iteration calls.** dict.c hash tables are always power of two in size, and they* use chaining, so the position of an element in a given table is given* by computing the bitwise AND between Hash(key) and SIZE-1* (where SIZE-1 is always the mask that is equivalent to taking the rest* of the division between the Hash of the key and SIZE).** For example if the current hash table size is 16, the mask is* (in binary) 1111. The position of a key in the hash table will always be* the last four bits of the hash output, and so forth.** WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?** If the hash table grows, elements can go anywhere in one multiple of* the old bucket: for example let's say we already iterated with* a 4 bit cursor 1100 (the mask is 1111 because hash table size = 16).** If the hash table will be resized to 64 elements, then the new mask will* be 111111. The new buckets you obtain by substituting in ??1100* with either 0 or 1 can be targeted only by keys we already visited* when scanning the bucket 1100 in the smaller hash table.** By iterating the higher bits first, because of the inverted counter, the* cursor does not need to restart if the table size gets bigger. It will* continue iterating using cursors without '1100' at the end, and also* without any other combination of the final 4 bits already explored.** Similarly when the table size shrinks over time, for example going from* 16 to 8, if a combination of the lower three bits (the mask for size 8* is 111) were already completely explored, it would not be visited again* because we are sure we tried, for example, both 0111 and 1111 (all the* variations of the higher bit) so we don't need to test it again.** WAIT... YOU HAVE *TWO* TABLES DURING REHASHING!** Yes, this is true, but we always iterate the smaller table first, then* we test all the expansions of the current cursor into the larger* table. For example if the current cursor is 101 and we also have a* larger table of size 16, we also test (0)101 and (1)101 inside the larger* table. This reduces the problem back to having only one table, where* the larger one, if it exists, is just an expansion of the smaller one.** LIMITATIONS** This iterator is completely stateless, and this is a huge advantage,* including no additional memory used.** The disadvantages resulting from this design are:** 1) It is possible we return elements more than once. However this is usually* easy to deal with in the application level.* 2) The iterator must return multiple elements per call, as it needs to always* return all the keys chained in a given bucket, and all the expansions, so* we are sure we don't miss keys moving during rehashing.* 3) The reverse cursor is somewhat hard to understand at first, but this* comment is supposed to help.*/ unsigned long dictScan(dict *d,unsigned long v,dictScanFunction *fn,void *privdata) {dictht *t0, *t1;const dictEntry *de;unsigned long m0, m1;if (dictSize(d) == 0) return 0;if (!dictIsRehashing(d)) {t0 = &(d->ht[0]);m0 = t0->sizemask;/* Emit entries at cursor */de = t0->table[v & m0];while (de) {fn(privdata, de);de = de->next;}} else {t0 = &d->ht[0];t1 = &d->ht[1];/* Make sure t0 is the smaller and t1 is the bigger table */if (t0->size > t1->size) {t0 = &d->ht[1];t1 = &d->ht[0];}m0 = t0->sizemask;m1 = t1->sizemask;/* Emit entries at cursor */de = t0->table[v & m0];while (de) {fn(privdata, de);de = de->next;}/* Iterate over indices in larger table that are the expansion* of the index pointed to by the cursor in the smaller table */do {/* Emit entries at cursor */de = t1->table[v & m1];while (de) {fn(privdata, de);de = de->next;}/* Increment bits not covered by the smaller mask */v = (((v | m0) + 1) & ~m0) | (v & m0);/* Continue while bits covered by mask difference is non-zero */} while (v & (m0 ^ m1));}/* Set unmasked bits so incrementing the reversed cursor* operates on the masked bits of the smaller table */v |= ~m0;/* Increment the reverse cursor */v = rev(v);v++;v = rev(v);return v; }/* ------------------------- private functions ------------------------------ *//* Expand the hash table if needed */ static int _dictExpandIfNeeded(dict *d) {/* Incremental rehashing already in progress. Return. */if (dictIsRehashing(d)) return DICT_OK;/* If the hash table is empty expand it to the initial size. */if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);/* If we reached the 1:1 ratio, and we are allowed to resize the hash* table (global setting) or we should avoid it but the ratio between* elements/buckets is over the "safe" threshold, we resize doubling* the number of buckets. */if (d->ht[0].used >= d->ht[0].size &&(dict_can_resize ||d->ht[0].used/d->ht[0].size > dict_force_resize_ratio)){return dictExpand(d, d->ht[0].used*2);}return DICT_OK; }/* Our hash table capability is a power of two */ static unsigned long _dictNextPower(unsigned long size) {unsigned long i = DICT_HT_INITIAL_SIZE;if (size >= LONG_MAX) return LONG_MAX;while(1) {if (i >= size)return i;i *= 2;} }/* Returns the index of a free slot that can be populated with* a hash entry for the given 'key'.* If the key already exists, -1 is returned.** Note that if we are in the process of rehashing the hash table, the* index is always returned in the context of the second (new) hash table. */ static int _dictKeyIndex(dict *d, const void *key) {unsigned int h, idx, table;dictEntry *he;/* Expand the hash table if needed */if (_dictExpandIfNeeded(d) == DICT_ERR)return -1;/* Compute the key hash value */h = dictHashKey(d, key);for (table = 0; table <= 1; table++) {idx = h & d->ht[table].sizemask;/* Search if this slot does not already contain the given key */he = d->ht[table].table[idx];while(he) {if (dictCompareKeys(d, key, he->key))return -1;he = he->next;}if (!dictIsRehashing(d)) break;}return idx; }void dictEmpty(dict *d, void(callback)(void*)) {_dictClear(d,&d->ht[0],callback);_dictClear(d,&d->ht[1],callback);d->rehashidx = -1;d->iterators = 0; }void dictEnableResize(void) {dict_can_resize = 1; }void dictDisableResize(void) {dict_can_resize = 0; }#if 0/* The following is code that we don't use for Redis currently, but that is part of the library. *//* ----------------------- Debugging ------------------------*/#define DICT_STATS_VECTLEN 50 static void _dictPrintStatsHt(dictht *ht) {unsigned long i, slots = 0, chainlen, maxchainlen = 0;unsigned long totchainlen = 0;unsigned long clvector[DICT_STATS_VECTLEN];if (ht->used == 0) {printf("No stats available for empty dictionaries\n");return;}for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;for (i = 0; i < ht->size; i++) {dictEntry *he;if (ht->table[i] == NULL) {clvector[0]++;continue;}slots++;/* For each hash entry on this slot... */chainlen = 0;he = ht->table[i];while(he) {chainlen++;he = he->next;}clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;if (chainlen > maxchainlen) maxchainlen = chainlen;totchainlen += chainlen;}printf("Hash table stats:\n");printf(" table size: %ld\n", ht->size);printf(" number of elements: %ld\n", ht->used);printf(" different slots: %ld\n", slots);printf(" max chain length: %ld\n", maxchainlen);printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);printf(" Chain length distribution:\n");for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {if (clvector[i] == 0) continue;printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);} }void dictPrintStats(dict *d) {_dictPrintStatsHt(&d->ht[0]);if (dictIsRehashing(d)) {printf("-- Rehashing into ht[1]:\n");_dictPrintStatsHt(&d->ht[1]);} }/* ----------------------- StringCopy Hash Table Type ------------------------*/static unsigned int _dictStringCopyHTHashFunction(const void *key) {return dictGenHashFunction(key, strlen(key)); }static void *_dictStringDup(void *privdata, const void *key) {int len = strlen(key);char *copy = zmalloc(len+1);DICT_NOTUSED(privdata);memcpy(copy, key, len);copy[len] = '\0';return copy; }static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,const void *key2) {DICT_NOTUSED(privdata);return strcmp(key1, key2) == 0; }static void _dictStringDestructor(void *privdata, void *key) {DICT_NOTUSED(privdata);zfree(key); }dictType dictTypeHeapStringCopyKey = {_dictStringCopyHTHashFunction, /* hash function */_dictStringDup, /* key dup */NULL, /* val dup */_dictStringCopyHTKeyCompare, /* key compare */_dictStringDestructor, /* key destructor */NULL /* val destructor */ };/* This is like StringCopy but does not auto-duplicate the key.* It's used for intepreter's shared strings. */ dictType dictTypeHeapStrings = {_dictStringCopyHTHashFunction, /* hash function */NULL, /* key dup */NULL, /* val dup */_dictStringCopyHTKeyCompare, /* key compare */_dictStringDestructor, /* key destructor */NULL /* val destructor */ };/* This is like StringCopy but also automatically handle dynamic* allocated C strings as values. */ dictType dictTypeHeapStringCopyKeyValue = {_dictStringCopyHTHashFunction, /* hash function */_dictStringDup, /* key dup */_dictStringDup, /* val dup */_dictStringCopyHTKeyCompare, /* key compare */_dictStringDestructor, /* key destructor */_dictStringDestructor, /* val destructor */ }; #endif創(chuàng)作挑戰(zhàn)賽新人創(chuàng)作獎(jiǎng)勵(lì)來咯,堅(jiān)持創(chuàng)作打卡瓜分現(xiàn)金大獎(jiǎng)
總結(jié)
以上是生活随笔為你收集整理的redis 源码 dict.c 实现的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: [ERROR] org.testng.T
- 下一篇: 现货原油是什么 什么是现货原油