Learning from Imbalanced Classes
生活随笔
收集整理的這篇文章主要介紹了
Learning from Imbalanced Classes
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
數據不均衡
數據不平衡是一個非常經典的問題,數據挖掘、計算廣告、NLP等工作經常遇到。該文總結了可能有效的方法,值得參考:
1.Do nothing. Sometimes you get lucky and nothing needs to be done. You can train on the so-called natural (or stratified) distribution and sometimes it works without need for modification.2. Balance the training set in some way:2.1 Oversample the minority class.2.2 Undersample the majority class.2.3 Synthesize new minority classes.3. Throw away minority examples and switch to an anomaly detection framework.4. At the algorithm level, or after it:4.1 Adjust the class weight (misclassification costs).4.2 Adjust the decision threshold.4.3 Modify an existing algorithm to be more sensitive to rare classes.5. Construct an entirely new algorithm to perform well on imbalanced data.參考文獻
https://svds.com/learning-imbalanced-classes/
Learning from Imbalanced Classes
創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎總結
以上是生活随笔為你收集整理的Learning from Imbalanced Classes的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 交通银行小白卡是信用卡吗?额度多少?
- 下一篇: 权益、年费、额度三方面分析:中银京东联名