最新的一些开源face alignment及评价
評價:速度快,可商用,有些時候不太準確 
 2. CLM-framework: https://github.com/TadasBaltrusaitis/CLM-framework 
評價:很準確,不可商用 
 3. Face Detection, Pose Estimation and Landmark Localization in the Wild :http://www.ics.uci.edu/~xzhu/face/ 
評價:Very slow (~10 seconds an image after hyper threading on a 8-core CPU), but very accurate when it comes to high pose variations 
 4. SDM patrikhuber/superviseddescent:https://github.com/patrikhuber/superviseddescent
評價:Nicely written C++ code, though not very robust 
 5. Robust face landmark estimation under occlusion:http://www.vision.caltech.edu/xpburgos/ICCV13/
評價:Specially designed for handling occlusions(遮擋區域), but slow on account being written in MATLAB. 
 6. 應用了CLM的項目:https://www.technologyreview.com/s/541866/this-car-knows-your-next-misstep-before-you-make-it/
評價:I actually explored a large number of open-source facial landmark detectors for a project, and found the CLM framework to outperform everything else (in terms of both speed and accuracy). We eventually used it in our project: www.technologyreview.com/news/… 
 7. clandmark:https://github.com/uricamic/clandmark 
 8. kylemcdonald/FaceTracker:https://github.com/kylemcdonald/FaceTracker 
 9. ++Android app for facial landmark tracking++:https://github.com/ajdroid/facetrackerapp 
 10. kylemcdonald/FaceTracker:https://github.com/kylemcdonald/FaceTracker 
 11. http://note.youdao.com/groupshare/web/file.html?token=4F58BCBC04714A7C8ADE604364BA97BB&gid=22052122
12: ofxFaceTracker:https://github.com/kylemcdonald/ofxFaceTracker
參考鏈接:http://www.learnopencv.com/facial-landmark-detection/#comment-2471797375
總結
以上是生活随笔為你收集整理的最新的一些开源face alignment及评价的全部內容,希望文章能夠幫你解決所遇到的問題。
 
                            
                        - 上一篇: 【C语言进阶深度学习记录】一 数据类型的
- 下一篇: mysql sqlyog讲解_MySQL
