大数据全样而非抽样原理_干货 | 大数据思维的十大核心原理(二)
【芝麻HTTP】三、全樣本原理
從抽樣轉變為需要全部數據樣本
需要全部數據樣本而不是抽樣,你不知道的事情比你知道的事情更重要,但如果現在數據足夠多,它會讓人能夠看得見、摸得著規律。數據這么大、這么多,所以人們覺得有足夠的能力把握未來,對不確定狀態的一種判斷,從而做出自己的決定。這些東西我們聽起來都是非常原始的,但是實際上背后的思維方式,和我們今天所講的大數據是非常像的。
舉例:在大數據時代,無論是商家還是信息的搜集者,會比我們自己更知道你可能會想干什么。現在的數據還沒有被真正挖掘,如果真正挖掘的話,通過信用卡消費的記錄,可以成功預測未來5年內的情況。統計學里頭最基本的一個概念就是,全部樣本才能找出規律。為什么能夠找出行為規律?一個更深層的概念是人和人是一樣的,如果是一個人特例出來,可能很有個性,但當人口樣本數量足夠大時,就會發現其實每個人都是一模一樣的。
說明:用全數據樣本思維方式思考問題,解決問題。從抽樣中得到的結論總是有水分的,而全部樣本中得到的結論水分就很少,大數據越大,真實性也就越大,因為大數據包含了全部的信息。
四、關注效率原理
由關注精確度轉變為關注效率
關注效率而不是精確度,大數據標志著人類在尋求量化和認識世界的道路上前進了一大步,過去不可計量、存儲、分析和共享的很多東西都被數據化了,擁有大量的數據和更多不那么精確的數據為我們理解世界打開了一扇新的大門。大數據能提高生產效率和銷售效率,原因是大數據能夠讓我們知道市場的需要,人的消費需要。大數據讓企業的決策更科學,由關注精確度轉變為關注效率的提高,大數據分析能提高企業的效率。
例如:在互聯網大數據時代,企業產品迭代的速度在加快。三星、小米手機制造商半年就推出一代新智能手機。利用互聯網、大數據提高企業效率的趨勢下,快速就是效率、預測就是效率、預見就是效率、變革就是效率、創新就是效率、應用就是效率。
競爭是企業的動力,而效率是企業的生命,效率低與效率高是衡量企來成敗的關鍵。一般來講,投入與產出比是效率,追求高效率也就是追求高價值。手工、機器、自動機器、智能機器之間效率是不同的,智能機器效率更高,已能代替人的思維勞動。智能機器核心是大數據制動,而大數據制動的速度更快。在快速變化的市場,快速預測、快速決策、快速創新、快速定制、快速生產、快速上市成為企業行動的準則,也就是說,速度就是價值,效率就是價值,而這一切離不開大數據思維。
說明:用關注效率思維方式思考問題,解決問題。大數據思維有點像混沌思維,確定與不確定交織在一起,過去那種一元思維結果,已被二元思維結果取代。過去尋求精確度,現在尋求高效率;過去尋求因果性,現在尋求相關性;過去尋找確定性,現在尋找概率性,對不精確的數據結果已能容忍。只要大數據分析指出可能性,就會有相應的結果,從而為企業快速決策、快速動作、創占先機提高了效率。
芝麻HTTP為您提供安全穩定、高效便捷的爬蟲代理IP服務,提供高匿代理IP資源的同時,還可以設置不同類型的HTTP代理,以及設置去重等等標準,簡單一點說,芝麻HTTP就好像是一個中間橋梁,可以根據用戶的需求設置HTTP代理類型,助您不間斷獲取行業數據,芝麻替您考慮資源質量問題,助您輕松跨入“互聯網大數據”時代。官網可免費提取試用,更多問題請點擊官網資訊客服。————芝麻HTTP運營管理團隊
總結
以上是生活随笔為你收集整理的大数据全样而非抽样原理_干货 | 大数据思维的十大核心原理(二)的全部內容,希望文章能夠幫你解決所遇到的問題。
 
                            
                        - 上一篇: 分组显示的ListView分页加载数据
- 下一篇: HTML4和HTML5的区别[转]
