【机器视觉学习笔记】双线性插值实现图片任意角度旋转(C++)
生活随笔
收集整理的這篇文章主要介紹了
【机器视觉学习笔记】双线性插值实现图片任意角度旋转(C++)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
目錄
- 原理
- 源碼
- RotateImage_BilinearInterpolation
- 主函數
- 效果
- 與最近鄰插值比較
- 原圖
- 最近鄰插值效果(局部)
- 雙線性插值效果(局部)
- 完整源碼
平臺:Windows 10 20H2
Visual Studio 2015
OpenCV 4.5.3
原理
如圖所示,我們需要求P點的像素值。我們已知了Q11、Q21、Q12、Q22、P的坐標。也知道Q11、Q21、Q12、Q22的像素值。所以先用關于X的單線性插值去分別計算R1、R2的像素值
再使用關于y方向的單線性插值計算P點的像素值。
由以上思路可化簡得到如下式子。IxI_xIx?為該點上的像素值或灰度值
源碼
RotateImage_BilinearInterpolation
Mat RotateImage_BilinearInterpolation(Mat src, double angle) {int x0, y0, x1, y1;angle = angle * 3.1415926535897932384626433832795 / 180;int dx = abs((int)src.cols*cos(angle)) + abs((int)src.rows*sin(angle));int dy = abs((int)src.cols*sin(angle)) + abs((int)src.rows*cos(angle));Mat dst(dy, dx, CV_8UC3, Scalar(0)); //創建新圖像for (x1 = 0; x1 < dst.cols; x1++){for (y1 = 0; y1 < dst.rows; y1++){double fx0, fy0;double fx1, fy1;double R;double sita, sita0, sita1;int x01, y01;int x02, y02;int x03, y03;int x04, y04;double p, q;//將圖片中點設為坐標原點fx1 = x1 - dst.cols / 2;fy1 = y1 - dst.rows / 2;R = sqrt(fx1 * fx1 + fy1 * fy1); //極徑sita = angle;sita1 = atan2(fy1, fx1); //新點極角sita0 = sita1 + sita; //舊點極角//舊點直角坐標(中點為坐標原點)fx0 = R * cos(sita0);fy0 = R * sin(sita0);//舊點直角坐標(坐標原點在角上)x0 = fx0 + src.cols / 2 + 0.5;y0 = fy0 + src.rows / 2 + 0.5;x01 = (int)(fx0 + src.cols / 2);y01 = (int)(fy0 + src.rows / 2);x02 = x01 + 1;y02 = y01;x03 = x01 + 1;y03 = y01 + 1;x04 = x01;y04 = y01 + 1;p = (fx0 + src.cols / 2) - x01;q = (fy0 + src.rows / 2) - y01;if (x01 >= 0 && x03 < src.cols && y01 >= 0 && y03 < src.rows){for (int i = 0; i < 3; ++i)dst.at<Vec3b>(Point(x1, y1))[i] = src.at<Vec3b>(Point(x01, y01))[i] * (1 - p) * (1 - q) + src.at<Vec3b>(Point(x02, y02))[i] * p * (1 - q) + src.at<Vec3b>(Point(x03, y03))[i] * p * q + src.at<Vec3b>(Point(x04, y04))[i] * (1 - p) * q;}else if (x0 >= 0 && x0 < src.cols && y0 >= 0 && y0 < src.rows)dst.at<Vec3b>(Point(x1, y1)) = src.at<Vec3b>(Point(x0, y0));elsedst.at<Vec3b>(Point(x1, y1)) = 0;}}return dst; }主函數
int main(int argc, char * argv[]) {Mat src;src = imread("D:\\Work\\OpenCV\\Workplace\\Test_1\\4.jpg");imshow("原圖", src);imshow("輸出", RotateImage_BilinearInterpolation(src, 45));waitKey(0);return 0; }效果
與最近鄰插值比較
原圖
最近鄰插值效果(局部)
雙線性插值效果(局部)
完整源碼
#include <opencv2\opencv.hpp> #include <iostream>using namespace cv; using namespace std;Mat RotateImage_BilinearInterpolation(Mat src, double angle) {int x0, y0, x1, y1;angle = angle * 3.1415926535897932384626433832795 / 180;int dx = abs((int)src.cols*cos(angle)) + abs((int)src.rows*sin(angle));int dy = abs((int)src.cols*sin(angle)) + abs((int)src.rows*cos(angle));Mat dst(dy, dx, CV_8UC3, Scalar(0)); //創建新圖像for (x1 = 0; x1 < dst.cols; x1++){for (y1 = 0; y1 < dst.rows; y1++){double fx0, fy0;double fx1, fy1;double R;double sita, sita0, sita1;int x01, y01;int x02, y02;int x03, y03;int x04, y04;double p, q;//將圖片中點設為坐標原點fx1 = x1 - dst.cols / 2;fy1 = y1 - dst.rows / 2;R = sqrt(fx1 * fx1 + fy1 * fy1); //極徑sita = angle;sita1 = atan2(fy1, fx1); //新點極角sita0 = sita1 + sita; //舊點極角//舊點直角坐標(中點為坐標原點)fx0 = R * cos(sita0);fy0 = R * sin(sita0);//舊點直角坐標(坐標原點在角上)x0 = fx0 + src.cols / 2 + 0.5;y0 = fy0 + src.rows / 2 + 0.5;x01 = (int)(fx0 + src.cols / 2);y01 = (int)(fy0 + src.rows / 2);x02 = x01 + 1;y02 = y01;x03 = x01 + 1;y03 = y01 + 1;x04 = x01;y04 = y01 + 1;p = (fx0 + src.cols / 2) - x01;q = (fy0 + src.rows / 2) - y01;if (x01 >= 0 && x03 < src.cols && y01 >= 0 && y03 < src.rows){for (int i = 0; i < 3; ++i)dst.at<Vec3b>(Point(x1, y1))[i] = src.at<Vec3b>(Point(x01, y01))[i] * (1 - p) * (1 - q) + src.at<Vec3b>(Point(x02, y02))[i] * p * (1 - q) + src.at<Vec3b>(Point(x03, y03))[i] * p * q + src.at<Vec3b>(Point(x04, y04))[i] * (1 - p) * q;}else if (x0 >= 0 && x0 < src.cols && y0 >= 0 && y0 < src.rows)dst.at<Vec3b>(Point(x1, y1)) = src.at<Vec3b>(Point(x0, y0));elsedst.at<Vec3b>(Point(x1, y1)) = 0;}}return dst; }int main(int argc, char * argv[]) {Mat src;src = imread("D:\\Work\\OpenCV\\Workplace\\Test_1\\4.jpg");imshow("原圖", src);imshow("輸出", RotateImage_BilinearInterpolation(src, 45));waitKey(0);return 0; }總結
以上是生活随笔為你收集整理的【机器视觉学习笔记】双线性插值实现图片任意角度旋转(C++)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 2021 年 五一数学建模比赛 B 题(
- 下一篇: colorUI的使用