傅里叶光学-函数简介
文章目錄
- 常用非初等函數:
- 普通函數
- 矩形函數
- sincsincsinc函數
- 三角形函數
- 階躍函數
- 符號函數
- 圓域函數,圓孔透過率
- 高斯函數
- 廣義函數
- δ\deltaδ函數
- δ\deltaδ函數的性質
- 梳妝函數
- 梳妝函數的用途
常用非初等函數:
普通函數
矩形函數
一維矩形函數,門函數
rect(xa)={1,x?∣a2∣0,其他rect\left(\frac{x}{a}\right) = \left\{\begin{array}{c} 1, & x \leqslant\left|\frac{a}{2}\right|\\[2mm] 0, & 其他 \end{array}\right. rect(ax?)={1,0,?x?∣∣?2a?∣∣?其他?
二維矩形函數,矩孔透過率
rect(xa,yb)=rect(xa)rect(yb)={1,x?∣a2∣,y?∣b2∣0,其他rect\left(\frac{x}{a},\frac{y}{b}\right) = rect\left(\frac{x}{a}\right)rect\left(\frac{y}{b}\right) = \left\{\begin{array}{c} 1, & x \leqslant \left|\frac{a}{2}\right|,y \leqslant \left|\frac{b}{2}\right|\\[2mm] 0, & 其他 \end{array}\right. rect(ax?,by?)=rect(ax?)rect(by?)={1,0,?x?∣∣?2a?∣∣?,y?∣∣?2b?∣∣?其他?
sincsincsinc函數
sinc(xa)=sin?πxaπxasinc\left(\frac{x}{a}\right) = \frac{\sin\frac{\pi x}{a}}{\frac{\pi x}{a}} sinc(ax?)=aπx?sinaπx??
三角形函數
一維三角形函數
Λ(xa)={1?∣xa∣,∣x∣?a0,其他\Lambda\left(\frac{x}{a}\right) = \left\{\begin{array}{c} 1-\left|\frac{x}{a}\right|, & \left|x\right| \leqslant a\\[2mm] 0, & 其他 \end{array}\right. Λ(ax?)={1?∣∣?ax?∣∣?,0,?∣x∣?a其他?
二維三角形函數
Λ(xa,yb)=Λ(xa)Λ(yb)\Lambda\left(\frac{x}{a},\frac{y}{b}\right) = \Lambda\left(\frac{x}{a}\right)\Lambda\left(\frac{y}{b}\right) Λ(ax?,by?)=Λ(ax?)Λ(by?)
階躍函數
step(x)={1,x>012,x=00,x<0step\left(x\right) = \left\{\begin{array}{c} 1,&x>0\\\frac{1}{2},&x=0\\0,&x<0 \end{array}\right. step(x)=????1,21?,0,?x>0x=0x<0?
符號函數
sgn(x)={1,x>00,x=0?1,x<0sgn(x) = \left\{ {\begin{array}{c} {1,}&{x > 0}\\ {0,}&{x = 0}\\ { - 1,}&{x < 0} \end{array}} \right. sgn(x)=????1,0,?1,?x>0x=0x<0?
圓域函數,圓孔透過率
circ(x2+y2r0)={1,x2+y2<r00,其他circ(rr0)={1,r<r00,r>r0\begin{array}{c} circ\left(\cfrac{\sqrt{x^2+y^2}}{r_0}\right) = \left\{\begin{array}{c} 1, & \sqrt{x^2+y^2}<r_0\\ 0, & 其他 \end{array}\right.\\[4mm] circ\left(\frac{r}{r_0}\right) = \left\{\begin{array}{c} 1, & r<r_0\\ 0, & r>r_0 \end{array}\right. \end{array} circ(r0?x2+y2??)={1,0,?x2+y2?<r0?其他?circ(r0?r?)={1,0,?r<r0?r>r0???
高斯函數
gauss(xa)=exp?[?π(xa)2]gauss\left(\frac{x}{a}\right) = \exp\left[-\pi \left(\frac{x}{a}\right)^2\right] gauss(ax?)=exp[?π(ax?)2]
rectrectrect,tritritri,sincsincsinc,sinc2sinc^2sinc2,gaussgaussgauss函數的定義中,中心的縱坐標為1,積分為aaa。
廣義函數
δ\deltaδ函數
δ(x,y)={0,x≠0,y≠0∞,x=0,y=0??∞∞δ(x,y)dxdy=1\begin{array}{c} \delta\left(x,y\right) = \left\{\begin{array}{c} 0, & x\ne 0,y\ne 0\\ \infty, & x=0,y=0 \end{array}\right.\\[3mm] \iint\limits^\infty_{-\infty} \delta\left(x,y\right) dxdy = 1 \end{array} δ(x,y)={0,∞,?x?=0,y?=0x=0,y=0??∞?∞?δ(x,y)dxdy=1?
對于任意一個檢驗函數?(x,y)\phi\left(x,y\right)?(x,y),在x=y=0x=y=0x=y=0處連續,如果存在函數f(x,y)f\left(x,y\right)f(x,y)總滿足:
??∞∞f(x,y)?(x,y)dxdy=?(0,0)\iint\limits^\infty_{-\infty} f\left(x,y\right)\phi\left(x,y\right)dxdy = \phi\left(0,0\right) ?∞?∞?f(x,y)?(x,y)dxdy=?(0,0)
那么這個函數為δ\deltaδ函數。
δ\deltaδ函數的性質
-
篩選性質
??∞∞f(x,y)δ(x?x0,y?y0)dxdy=f(x0,y0)\iint\limits^\infty_{-\infty} f\left(x,y\right)\delta\left(x-x_0,y-y_0\right)dxdy = f\left(x_0,y_0\right) ?∞?∞?f(x,y)δ(x?x0?,y?y0?)dxdy=f(x0?,y0?) -
坐標縮放
δ(ax,by)=1∣ab∣δ(x,y)\delta\left(ax,by\right) = \frac{1}{\left|ab\right|}\delta\left(x,y\right) δ(ax,by)=∣ab∣1?δ(x,y) -
可分離變量
δ(x,y)=δ(x)δ(y)\delta\left(x,y\right) = \delta\left(x\right)\delta\left(y\right) δ(x,y)=δ(x)δ(y) -
乘積性質
f(x,y)δ(x?x0,y?y0)=f(x0,y0)δ(x?x0,y?y0)f\left(x,y\right)\delta\left(x-x_0,y-y_0\right) = f\left(x_0,y_0\right)\delta\left(x-x_0,y-y_0\right) f(x,y)δ(x?x0?,y?y0?)=f(x0?,y0?)δ(x?x0?,y?y0?) -
奇偶性
δ(x,y)=δ(?x,y)=δ(x,?y)=δ(?x,?y)δ′(x,y)=?δ′(?x,?y)\begin{array}{c} \delta\left(x,y\right) = \delta\left(-x,y\right) = \delta\left(x,-y\right) = \delta\left(-x,-y\right)\\[2mm] \delta'\left(x,y\right) = -\delta'\left(-x,-y\right) \end{array} δ(x,y)=δ(?x,y)=δ(x,?y)=δ(?x,?y)δ′(x,y)=?δ′(?x,?y)? -
導數性質
∫?∞∞f(x)δ′(x?x0)=?f′(x0)\int^\infty_{-\infty}f\left(x\right)\delta'\left(x-x_0\right) = -f'\left(x_0\right) ∫?∞∞?f(x)δ′(x?x0?)=?f′(x0?) -
功率性質
xnδ(n)(x)=(?1)nn!δ(x)x^n\delta^{\left(n\right)}\left(x\right) = \left(-1\right)^nn!\delta\left(x\right) xnδ(n)(x)=(?1)nn!δ(x)
梳妝函數
一維梳妝函數是間隔為1的δ\deltaδ函數的無窮序列
comb(x)=∑n=?∞∞δ(x?n)comb\left(x\right) = \sum\limits_{n=-\infty}^\infty\delta\left(x-n\right) comb(x)=n=?∞∑∞?δ(x?n)
周期為Δ\DeltaΔ時,
1Δcomb(xΔ)=∑?∞∞δ(x?nΔ)\frac{1}{\Delta}comb\left(\frac{x}{\Delta}\right) = \sum^\infty_{-\infty}\delta\left(x-n\Delta\right) Δ1?comb(Δx?)=?∞∑∞?δ(x?nΔ)
二維梳妝函數
comb(x,y)=comb(x)comb(y)comb\left(x,y\right) = comb\left(x\right)comb\left(y\right) comb(x,y)=comb(x)comb(y)
梳妝函數的用途
-
抽樣,把連續函數變成離散函數
f(x)comb(x)=∑n=?∞∞f(n)δ(x?n)f(x,y)comb(x,y)=∑n=?∞∞∑m=?∞∞f(n,m)δ(x?n,y?m)\begin{array}{c} f\left(x\right)comb\left(x\right) = \sum\limits_{n=-\infty}^\infty f\left(n\right)\delta\left(x-n\right)\\[2mm] f\left(x,y\right)comb\left(x,y\right) = \sum\limits_{n=-\infty}^\infty\sum\limits_{m=-\infty}^\infty f\left(n,m\right)\delta\left(x-n,y-m\right)\\[3mm] \end{array} f(x)comb(x)=n=?∞∑∞?f(n)δ(x?n)f(x,y)comb(x,y)=n=?∞∑∞?m=?∞∑∞?f(n,m)δ(x?n,y?m)? -
重復排列
f(x)?comb(x)=∑n=?∞∞f(x?n)f\left(x\right)*comb\left(x\right) = \sum\limits_{n=-\infty}^\infty f\left(x-n\right) f(x)?comb(x)=n=?∞∑∞?f(x?n)
總結
以上是生活随笔為你收集整理的傅里叶光学-函数简介的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 诺基亚2亿欧元建越南新工场
- 下一篇: 推荐两个检索和分类小工具Carrot2