聚类kmeans案例
生活随笔
收集整理的這篇文章主要介紹了
聚类kmeans案例
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
注:本案例為黑馬的課堂案例,上傳僅為方便查看
# 1.獲取數(shù)據(jù) # 2.數(shù)據(jù)基本處理 # 2.1 合并表格 # 2.2 交叉表合并 # 2.3 數(shù)據(jù)截取 # 3.特征工程 — pca # 4.機(jī)器學(xué)習(xí)(k-means) # 5.模型評(píng)估 import pandas as pd from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score # 1.獲取數(shù)據(jù) order_product = pd.read_csv("./data/instacart/order_products__prior.csv") products = pd.read_csv("./data/instacart/products.csv") orders = pd.read_csv("./data/instacart/orders.csv") aisles = pd.read_csv("./data/instacart/aisles.csv") # 2.數(shù)據(jù)基本處理 # 2.1 合并表格 table1 = pd.merge(order_product, products, on=["product_id", "product_id"]) table2 = pd.merge(table1, orders, on=["order_id", "order_id"]) table = pd.merge(table2, aisles, on=["aisle_id", "aisle_id"]) table.shape (32434489, 14) table.head()| 2 | 33120 | 1 | 1 | Organic Egg Whites | 86 | 16 | 202279 | prior | 3 | 5 | 9 | 8.0 | eggs |
| 26 | 33120 | 5 | 0 | Organic Egg Whites | 86 | 16 | 153404 | prior | 2 | 0 | 16 | 7.0 | eggs |
| 120 | 33120 | 13 | 0 | Organic Egg Whites | 86 | 16 | 23750 | prior | 11 | 6 | 8 | 10.0 | eggs |
| 327 | 33120 | 5 | 1 | Organic Egg Whites | 86 | 16 | 58707 | prior | 21 | 6 | 9 | 8.0 | eggs |
| 390 | 33120 | 28 | 1 | Organic Egg Whites | 86 | 16 | 166654 | prior | 48 | 0 | 12 | 9.0 | eggs |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | ... | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 42 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
5 rows × 134 columns
data.shape (206209, 134) # 2.3 數(shù)據(jù)截取 new_data = data[:1000] new_data.shape (1000, 134) # 3.特征工程 — pca transfer = PCA(n_components=0.9) trans_data = transfer.fit_transform(new_data) trans_data.shape (1000, 22) trans_data array([[-2.27452872e+01, -7.32942365e-01, -2.48945893e+00, ...,-4.78491473e+00, -3.10742945e+00, -2.45192316e+00],[ 5.28638801e+00, -3.00176267e+01, -1.11226906e+00, ...,9.24145693e+00, -3.11309382e+00, 2.20144174e+00],[-6.52593099e+00, -3.87333123e+00, -9.23859508e+00, ...,-1.33929081e+00, 1.25062993e+00, 6.12717485e-01],...,[ 1.31226615e+01, -2.77296885e+01, -4.62403246e+00, ...,7.40793534e+00, 1.03829352e+00, -1.39058393e+01],[ 1.64905900e+02, -8.54916188e+01, 1.90577481e-02, ...,-5.62014943e+00, -1.38488891e+01, -7.11424774e+00],[-1.60244724e+00, 1.82037661e+00, 8.55756408e+00, ...,3.69860152e+00, 2.82248188e+00, -3.79491023e+00]]) # 4.機(jī)器學(xué)習(xí)(k-means) estimator = KMeans(n_clusters=5) y_pre = estimator.fit_predict(trans_data) # 5.模型評(píng)估 silhouette_score(trans_data, y_pre) 0.4472179873751538總結(jié)
以上是生活随笔為你收集整理的聚类kmeans案例的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: RuntimeError: Attemp
- 下一篇: 2018 Google I/O 开发者大