理解《Charting the Right Manifold: Manifold Mixup for Few-shot Learning》
摘要:小樣本學習算法目標是學習模型參數,使其能夠適應于少量有標簽的未見類樣本分類。最近,正則化方法——流形混合算法(Manifold Mixup),集中于學習廣泛的表示,以適應數據分布的小變化;另一方面,自監督學習是僅利用數據內在結構學習語義特征。針對小樣本任務,本文利用自監督和正則化技術,研究學習相關特征流形。
注釋:流形混合算法(Manifold Mixup)作用是使網絡對輸入數據進行變換/嵌入后,更加平滑和均勻,從而使得系統的泛化,性能得到改善。
1. 主要貢獻:
1)發現Manifold Mixup的正則化技術,對數據分布的小變化具有魯棒性,增強小樣本任務的性能;
2)在訓練處理過程增加自監督損失,能夠對語義特征穩定學習,推動小樣本分類的重大進步。在自監督任務中使用旋轉(rotation[18])和標本(exemplar[11])。(了解自監督可參考解讀自監督學習(Self-Supervised Learning)幾篇相關paper - 知乎)
3)運用Manifold Mixup的正則化技術在特征流形上,利用自監督任務,可以進一步改善小樣本任務性能。
2. 方法?
2.1基本情況
? ? ? ? 考慮典型的小樣本學習問題。:大量有標簽樣本集,共類;:少量有標簽樣本(支撐集S)和無標簽樣本(查詢集Q),類別共新類。
- ?學習的第一步是訓練類的神經網絡分類器:
? ? ? ??是卷積特征,是余弦分類器,是模型的超參數。
- 學習的第二部是:fine-tuning模型,凍結特征層,訓練類余弦分類器。該模型(S2M2)如圖1所屬。
? ? ? ? 該方法關鍵是借助自監督和規則技術學習通常目的的表示來解決小樣本任務。自監督方法是采用文獻[18]的旋轉和文獻[11]的exemplar來得到適合的特征流形,之后使用Manifold Mixup的正則化[62]來提供穩定的特征提取架構。
2.2?Manifold Mixup for Few-shot Learning
? ? ? ? 在神經網絡分類器高層表示經常看作是有意義的流形,提供數據相關幾何特征,可以解決某個具體任務。因此,空間上特征向量的線性插值與分類相關。依據這一出發點,Manifold Mixup借助神經網絡線性插值可有助于訓練模型泛化性。
? ? ? ?假設Manifold Mixup在基類上,訓練損失表示如下:
?式中,:分別是輸入和的第l層特征,損失L:標準交叉熵,混合系數是從β分布中取樣。
? ? ? ? 訓練損失函數Lmm是為了激勵模型預測,更少地信任隱含層表示的線性插值。
2.3?Charting the Right Manifold
2.3.1 Self-Supervision: Towards the Right Manifol
(1)旋轉
? ? ? ? 在該自監督任務里,輸入圖像旋轉不同角度,模型的附屬目的是預測旋轉量。在圖像分類中,附屬損失被加到標準類損失來學習更一般的表示。
? ? ? ? 在本文中,使用了4類線性分類器來,預測屬于4類中哪一個。線性分類器位于特征表示倒數第二層,其中特征表示為圖像x旋轉了4個角度。
?(2)Exemplar
? ? ? ? Exemplar訓練目的是使特征表示對于廣泛的圖像變形(平移、尺度、旋轉、對比度和色彩變換)具有不變性。在某個小批次M,每個圖像通過隨機增量產生4個副本,這4個副本是圖像的正例,該批次的其他圖像是負例。之后,在特征上使用硬批次三元組損失和軟邊界,使得正例特征表示更接近。
? ? ? ? ?損失表示如下:
?式中,D是特征表示空間f的歐式距離,是x中類別i的第k個示例,exp項是圖像與正示例間最大距離,我們希望其減小。min距離是指圖像與負示例間的距離,我們希望其最大化。
2.3.2 S2M2
? ? ? ? 小樣本學習場景依賴于學習穩定性和特征泛化能力來區分基類(base classes)和新類(novel classes)。為了這個目的,重要的方法是使用更寬的決策邊界來劃分基類表示,這樣允許模型對新類具有泛化性。Manifold Mixup提供有效方法使已知類扁平表示變得更緊湊。可是,文獻[62]聲稱Manifold Mixup能處理小的分布變化,但是當基類和新類差距較大時就無能為力了。因此,本文使用自監督方法,當訓練基類時附加損失提供了特征表示的更豐富的決策邊界,允許模型更適應新類。
流程如下,具體包括兩個步驟:
- 步驟1:自監督訓練:利用自監督的附加損失訓練模型,計算分類損失;
- 步驟2:混合流形的精調:利用混合模型損失精調步驟1的模型。
- 得到訓練好的網絡,利用余弦分類器適應小樣本任務。
- 代碼鏈接:https://github.com/nupurkmr9/S2M2 fewshot
- 文章鏈接:http://arxiv.org/abs/1907.12087v2
小樣本學習的前提是訓練樣本集有大量樣本,目標是解決少量未見樣本的分類。但是,有很多領域,訓練樣本集也缺少。怎么辦?
總結
以上是生活随笔為你收集整理的理解《Charting the Right Manifold: Manifold Mixup for Few-shot Learning》的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: System.Windows.Forms
- 下一篇: High-speed Charting