bigint hive java类型_详解Apache Hudi如何配置各种类型分区
1. 引入
Apache Hudi支持多種分區方式數據集,如多級分區、單分區、時間日期分區、無分區數據集等,用戶可根據實際需求選擇合適的分區方式,下面來詳細了解Hudi如何配置何種類型分區。
2. 分區處理
為說明Hudi對不同分區類型的處理,假定寫入Hudi的Schema如下
{ "type" : "record", "name" : "HudiSchemaDemo", "namespace" : "hoodie.HudiSchemaDemo", "fields" : [ { "name" : "age", "type" : [ "long", "null" ] }, { "name" : "location", "type" : [ "string", "null" ] }, { "name" : "name", "type" : [ "string", "null" ] }, { "name" : "sex", "type" : [ "string", "null" ] }, { "name" : "ts", "type" : [ "long", "null" ] }, { "name" : "date", "type" : [ "string", "null" ] } ]}其中一條具體數據如下
{ "name": "zhangsan", "ts": 1574297893837, "age": 16, "location": "beijing", "sex":"male", "date":"2020/08/16"}2.1 單分區
單分區表示使用一個字段表示作為分區字段的場景,可具體分為非日期格式字段(如location)和日期格式字段(如date)
2.1.1 非日期格式字段分區
如使用上述location字段做為分區字段,在寫入Hudi并同步至Hive時配置如下
df.write().format("org.apache.hudi"). options(getQuickstartWriteConfigs()). option(DataSourceWriteOptions.TABLE_TYPE_OPT_KEY(), "COPY_ON_WRITE"). option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY(), "ts"). option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY(), "name"). option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY(), partitionFields). option(DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY(), keyGenerator). option(TABLE_NAME, tableName). option("hoodie.datasource.hive_sync.enable", true). option("hoodie.datasource.hive_sync.table", tableName). option("hoodie.datasource.hive_sync.username", "root"). option("hoodie.datasource.hive_sync.password", "123456"). option("hoodie.datasource.hive_sync.jdbcurl", "jdbc:hive2://localhost:10000"). option("hoodie.datasource.hive_sync.partition_fields", hivePartitionFields). option("hoodie.datasource.write.table.type", "COPY_ON_WRITE"). option("hoodie.embed.timeline.server", false). option("hoodie.datasource.hive_sync.partition_extractor_class", hivePartitionExtractorClass). mode(saveMode). save(basePath);值得注意如下幾個配置項
- DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY()配置為location;
- hoodie.datasource.hive_sync.partition_fields配置為location,與寫入Hudi的分區字段相同;
- DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY()配置為org.apache.hudi.keygen.SimpleKeyGenerator,或者不配置該選項,默認為org.apache.hudi.keygen.SimpleKeyGenerator;
- hoodie.datasource.hive_sync.partition_extractor_class配置為org.apache.hudi.hive.MultiPartKeysValueExtractor;
Hudi同步到Hive創建的表如下
CREATE EXTERNAL TABLE `notdateformatsinglepartitiondemo`( `_hoodie_commit_time` string, `_hoodie_commit_seqno` string, `_hoodie_record_key` string, `_hoodie_partition_path` string, `_hoodie_file_name` string, `age` bigint, `date` string, `name` string, `sex` string, `ts` bigint)PARTITIONED BY ( `location` string)ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'STORED AS INPUTFORMAT 'org.apache.hudi.hadoop.HoodieParquetInputFormat'OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'LOCATION 'file:/tmp/hudi-partitions/notDateFormatSinglePartitionDemo'TBLPROPERTIES ( 'last_commit_time_sync'='20200816154250', 'transient_lastDdlTime'='1597563780')查詢表notdateformatsinglepartitiondemo
tips:?查詢時請先將hudi-hive-sync-bundle-xxx.jar包放入$HIVE_HOME/lib下
2.1.2 日期格式分區
如使用上述date字段做為分區字段,核心配置項如下
- DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY()配置為date;
- hoodie.datasource.hive_sync.partition_fields配置為date,與寫入Hudi的分區字段相同;
- DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY()配置為org.apache.hudi.keygen.SimpleKeyGenerator,或者不配置該選項,默認為org.apache.hudi.keygen.SimpleKeyGenerator;
- hoodie.datasource.hive_sync.partition_extractor_class配置為org.apache.hudi.hive.SlashEncodedDayPartitionValueExtractor;
Hudi同步到Hive創建的表如下
CREATE EXTERNAL TABLE `dateformatsinglepartitiondemo`( `_hoodie_commit_time` string, `_hoodie_commit_seqno` string, `_hoodie_record_key` string, `_hoodie_partition_path` string, `_hoodie_file_name` string, `age` bigint, `location` string, `name` string, `sex` string, `ts` bigint)PARTITIONED BY ( `date` string)ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'STORED AS INPUTFORMAT 'org.apache.hudi.hadoop.HoodieParquetInputFormat'OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'LOCATION 'file:/tmp/hudi-partitions/dateFormatSinglePartitionDemo'TBLPROPERTIES ( 'last_commit_time_sync'='20200816155107', 'transient_lastDdlTime'='1597564276')查詢表dateformatsinglepartitiondemo
2.2 多分區
多分區表示使用多個字段表示作為分區字段的場景,如上述使用location字段和sex字段,核心配置項如下
- DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY()配置為location,sex;
- hoodie.datasource.hive_sync.partition_fields配置為location,sex,與寫入Hudi的分區字段相同;
- DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY()配置為org.apache.hudi.keygen.ComplexKeyGenerator;
- hoodie.datasource.hive_sync.partition_extractor_class配置為org.apache.hudi.hive.MultiPartKeysValueExtractor;
Hudi同步到Hive創建的表如下
CREATE EXTERNAL TABLE `multipartitiondemo`( `_hoodie_commit_time` string, `_hoodie_commit_seqno` string, `_hoodie_record_key` string, `_hoodie_partition_path` string, `_hoodie_file_name` string, `age` bigint, `date` string, `name` string, `ts` bigint)PARTITIONED BY ( `location` string, `sex` string)ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'STORED AS INPUTFORMAT 'org.apache.hudi.hadoop.HoodieParquetInputFormat'OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'LOCATION 'file:/tmp/hudi-partitions/multiPartitionDemo'TBLPROPERTIES ( 'last_commit_time_sync'='20200816160557', 'transient_lastDdlTime'='1597565166')查詢表multipartitiondemo
2.3 無分區
無分區場景是指無分區字段,寫入Hudi的數據集無分區。核心配置如下
- DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY()配置為空字符串;
- hoodie.datasource.hive_sync.partition_fields配置為空字符串,與寫入Hudi的分區字段相同;
- DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY()配置為org.apache.hudi.keygen.NonpartitionedKeyGenerator;
- hoodie.datasource.hive_sync.partition_extractor_class配置為org.apache.hudi.hive.NonPartitionedExtractor;
Hudi同步到Hive創建的表如下
CREATE EXTERNAL TABLE `nonpartitiondemo`( `_hoodie_commit_time` string, `_hoodie_commit_seqno` string, `_hoodie_record_key` string, `_hoodie_partition_path` string, `_hoodie_file_name` string, `age` bigint, `date` string, `location` string, `name` string, `sex` string, `ts` bigint)ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'STORED AS INPUTFORMAT 'org.apache.hudi.hadoop.HoodieParquetInputFormat'OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'LOCATION 'file:/tmp/hudi-partitions/nonPartitionDemo'TBLPROPERTIES ( 'last_commit_time_sync'='20200816161558', 'transient_lastDdlTime'='1597565767')查詢表nonpartitiondemo
2.4 Hive風格分區
除了上述幾種常見的分區方式,還有一種Hive風格分區格式,如location=beijing/sex=male格式,以location,sex作為分區字段,核心配置如下
- DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY()配置為location,sex;
- hoodie.datasource.hive_sync.partition_fields配置為location,sex,與寫入Hudi的分區字段相同;
- DataSourceWriteOptions.KEYGENERATOR_CLASS_OPT_KEY()配置為org.apache.hudi.keygen.ComplexKeyGenerator;
- hoodie.datasource.hive_sync.partition_extractor_class配置為org.apache.hudi.hive.SlashEncodedDayPartitionValueExtractor;
- DataSourceWriteOptions.HIVE_STYLE_PARTITIONING_OPT_KEY()配置為true;
生成的Hudi數據集目錄結構會為如下格式
/location=beijing/sex=maleHudi同步到Hive創建的表如下
CREATE EXTERNAL TABLE `hivestylepartitiondemo`( `_hoodie_commit_time` string, `_hoodie_commit_seqno` string, `_hoodie_record_key` string, `_hoodie_partition_path` string, `_hoodie_file_name` string, `age` bigint, `date` string, `name` string, `ts` bigint)PARTITIONED BY ( `location` string, `sex` string)ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'STORED AS INPUTFORMAT 'org.apache.hudi.hadoop.HoodieParquetInputFormat'OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'LOCATION 'file:/tmp/hudi-partitions/hiveStylePartitionDemo'TBLPROPERTIES ( 'last_commit_time_sync'='20200816172710', 'transient_lastDdlTime'='1597570039')查詢表hivestylepartitiondemo
3. 總結
本篇文章介紹了Hudi如何處理不同分區場景,上述配置的分區類配置可以滿足絕大多數場景,當然Hudi非常靈活,還支持自定義分區解析器,具體可查看KeyGenerator和PartitionValueExtractor類,其中所有寫入Hudi的分區字段生成器都是KeyGenerator的子類,所有同步至Hive的分區值解析器都是PartitionValueExtractor的子類。上述示例代碼都已經上傳至https://github.com/leesf/hudi-demos,該倉庫會持續補充各種使用Hudi的Demo,方便開發者快速了解Hudi,構建企業級數據湖,歡迎star & fork。
推薦閱讀
Apache Hudi表自動同步至阿里云數據湖分析DLA
Apache Hudi + AWS S3 + Athena實踐
官宣!AWS Athena正式可查Apache Hudi數據集
生態 | Apache Hudi插上Alluxio的翅膀
Apache Hudi重磅RFC解讀之存量表高效遷移機制
`
總結
以上是生活随笔為你收集整理的bigint hive java类型_详解Apache Hudi如何配置各种类型分区的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: python三大特征六大原则_面向对象程
- 下一篇: abd shell关闭所有程序_在后台服