小 Q 与函数求和 1(牛客练习赛 81 E)
小 Q 與函數求和 1
∑i=1n∑j=1n?(ijgcd?(i,j)K)∑i=1n∑j=1ngcd?(i,j)K?(ij)∑i=1n∑j=1ngcd?(i,j)K?(i)?(j)gcd?(i,j)?(gcd?(i,j))∑i=1n∑j=1ngcd?(i,j)K+1?(i)?(j)?(gcd?(i,j))∑d=1ndK+1inv(?(d))∑i=1nd∑j=1nd?(id)?(jd)[gcd?(i,j)=1]∑d=1ndK+1inv(phi(d))∑k=1nd?(k)∑i=1nkd?(ikd)∑j=1nkd?(jkd)T=kd,設f(T)=∑i=1nT?(it)∑T=1nf(T)2∑d∣TdK+1inv(?(d))μ(Td)設g(n)=∑i∣niK+1inv(?(i))μ(ni)∑i=1nf(i)2g(i)即為答案\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \phi(ij \gcd(i, j) ^ K)\\ \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \gcd(i, j) ^ K \phi(ij)\\ \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \gcd(i, j) ^ K \frac{\phi(i) \phi(j) \gcd(i, j)}{\phi(\gcd(i, j))}\\ \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \gcd(i, j) ^ {K + 1} \frac{\phi(i) \phi(j)}{ \phi(\gcd(i, j))}\\ \sum_{d = 1} ^{n} d ^{K + 1} inv(\phi(d)) \sum_{i = 1} ^{\frac{n}ze8trgl8bvbq} \sum_{j = 1} ^{\frac{n}ze8trgl8bvbq} \phi(id) \phi(jd)[\gcd(i, j) = 1]\\ \sum_{d = 1} ^{n} d ^{K + 1} inv(phi(d)) \sum_{k = 1} ^{\frac{n}ze8trgl8bvbq} \phi(k) \sum_{i = 1} ^{\frac{n}{kd}} \phi(ikd) \sum_{j = 1} ^{\frac{n}{kd}} \phi(jkd)\\ T = kd, 設f(T) = \sum_{i = 1} ^{\frac{n}{T}} \phi(it)\\ \sum_{T = 1} ^{n} f(T) ^ 2 \sum_{d \mid T} d ^{K + 1} inv(\phi(d)) \mu(\frac{T}ze8trgl8bvbq)\\ 設g(n) = \sum_{i \mid n} i ^{K + 1}inv (\phi(i)) \mu(\frac{n}{i})\\ \sum_{i = 1} ^{n} f(i) ^ 2 g(i)即為答案 i=1∑n?j=1∑n??(ijgcd(i,j)K)i=1∑n?j=1∑n?gcd(i,j)K?(ij)i=1∑n?j=1∑n?gcd(i,j)K?(gcd(i,j))?(i)?(j)gcd(i,j)?i=1∑n?j=1∑n?gcd(i,j)K+1?(gcd(i,j))?(i)?(j)?d=1∑n?dK+1inv(?(d))i=1∑dn??j=1∑dn???(id)?(jd)[gcd(i,j)=1]d=1∑n?dK+1inv(phi(d))k=1∑dn???(k)i=1∑kdn???(ikd)j=1∑kdn???(jkd)T=kd,設f(T)=i=1∑Tn???(it)T=1∑n?f(T)2d∣T∑?dK+1inv(?(d))μ(dT?)設g(n)=i∣n∑?iK+1inv(?(i))μ(in?)i=1∑n?f(i)2g(i)即為答案
所以預先處理iK+1i ^{K + 1}iK+1次冪,及inv(?(i))inv(\phi(i))inv(?(i)),即可(nlog?n)(n \log n)(nlogn)同時算得f(n)f(n)f(n),以及g(n)g(n)g(n),整體復雜度O(nlog?n)O(n \log n)O(nlogn),稍卡常,得寫 add sub 函數才能過。
總結
以上是生活随笔為你收集整理的小 Q 与函数求和 1(牛客练习赛 81 E)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 陈廷敬简介 陈廷敬介绍
- 下一篇: 手机wifi网速慢的解决办法 手机上网慢