牛客练习赛69 解方程
解方程
∑d∣nf(d)σp(nd)=σq(n)f?σp=σq有σk=∑d∣ndk=idk?If?idp?I=idq?I∑d∣nμ(d)=μ?I對(duì)上面式子同時(shí)卷上一個(gè)μf?idp=idq因?yàn)閕dk是一個(gè)完全積性函數(shù),所以idp?1=μ×idpidk?(μ×idp)=∑d∣ndk×μ(nd)×(nd)k=∑d∣nμ(d)=?f=idq?(μ×idp)f(n)=∑d∣nμ(d)×dp×(nd)qf(1)=1f(n)=nq?np(n∈primes)f(ab)=f(a)×f(b)(gcd(a,b)=1)f(nx)=nq?npn(x?1)q=nxq?np+(x?1)q(n∈primes)然后就可以線性篩了\sum_{d \mid n} f(d) \sigma_{p}(\frac{n}ze8trgl8bvbq) = \sigma_{q}(n)\\ f * \sigma_{p} = \sigma_{q}\\ 有\(zhòng)sigma_{k} = \sum_{d \mid n} d ^{k} = id_{k} * I\\ f * id_{p} * I = id_{q} * I\\ \sum_{d \mid n} \mu(d) = \mu * I\\ 對(duì)上面式子同時(shí)卷上一個(gè)\mu\\ f * id_{p} = id_{q}\\ 因?yàn)閕d_{k}是一個(gè)完全積性函數(shù),所以id_{p} ^{-1} = \mu \times id_{p}\\ id_{k} * (\mu \times id_{p}) = \sum_{d \mid n} d ^k \times \mu(\frac{n}ze8trgl8bvbq) \times (\frac{n}ze8trgl8bvbq) ^k = \sum_{d \mid n} \mu(d) = \epsilon\\ f = id_{q} * (\mu \times id_{p})\\ f(n) = \sum_{d \mid n} \mu(d) \times d ^ p \times (\frac{n}ze8trgl8bvbq) ^{q}\\ f(1) = 1\\ f(n) = n ^ q - n ^ p(n \in primes)\\ f(ab) = f(a) \times f(b) (gcd(a, b) = 1)\\ f(n ^ x) = n ^ q - n ^ p n ^{(x - 1)q} = n ^ {xq} - n ^{p + (x - 1) q} (n \in primes)\\ 然后就可以線性篩了\\ d∣n∑?f(d)σp?(dn?)=σq?(n)f?σp?=σq?有σk?=d∣n∑?dk=idk??If?idp??I=idq??Id∣n∑?μ(d)=μ?I對(duì)上面式子同時(shí)卷上一個(gè)μf?idp?=idq?因為idk?是一個(gè)完全積性函數(shù),所以idp?1?=μ×idp?idk??(μ×idp?)=d∣n∑?dk×μ(dn?)×(dn?)k=d∣n∑?μ(d)=?f=idq??(μ×idp?)f(n)=d∣n∑?μ(d)×dp×(dn?)qf(1)=1f(n)=nq?np(n∈primes)f(ab)=f(a)×f(b)(gcd(a,b)=1)f(nx)=nq?npn(x?1)q=nxq?np+(x?1)q(n∈primes)然后就可以線性篩了
/*Author : lifehappy */ #include <bits/stdc++.h>using namespace std;typedef long long ll;const int N = 1e7 + 10, mod = 998244353;ll prime[N], minnp[N], f[N], cnt, p, q, n;bool st[N];ll quick_pow(ll a, int n) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;a = a * a % mod;n >>= 1;}return ans; }void init() {f[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[++cnt] = i;f[i] = (quick_pow(i, q) - quick_pow(i, p) + mod) % mod;minnp[i] = 1;}for(int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {minnp[i * prime[j]] = minnp[i] + 1;f[i * prime[j]] = f[i / quick_pow(prime[j], minnp[i])] * (quick_pow(prime[j], q * (minnp[i * prime[j]])) - quick_pow(prime[j], p + minnp[i] * q) + mod) % mod;break;}minnp[i * prime[j]] = 1;f[i * prime[j]] = f[i] * f[prime[j]] % mod;}} }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);cin >> n >> p >> q;init();ll ans = 0;for(int i = 1; i <= n; i++) {ans ^= f[i];}cout << ans << "\n";return 0; }總結(jié)
以上是生活随笔為你收集整理的牛客练习赛69 解方程的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 莫比乌斯,欧拉函数题目练习(完结)
- 下一篇: 英伟达发布下一代超算芯片 HGX H20