cf1561D Up the Strip(D1D2)
cf1561D Up the Strip(D1&&D2)
題意:
一個長度為n的賽道,一開始在n的位置,你要前往到1,每次移動你有兩種方式:
問有多少移動方法:
問題D1:n的數據范圍是2e5
問題D1:n的數據范圍是4e6
D1
題解:
對于第一個轉移,任何一個狀態都可以轉移到x,因為是線性遞推的
而對于第二個轉移,我們可以發現?xz?\lfloor \frac{x}{z} \rfloor?zx??在一個區間內值是穩定不變的,這不就是整除分塊
因為z∈[2,x],所以整除分塊l的初始值為2
知道l,根據整除分塊可知r=i/(i/l)r=i/(i/l)r=i/(i/l)
對于這一整個區間i∈[l,r],他們的值?ni?\lfloor \frac{n}{i} \rfloor?in??的值是一樣,所以可以這一整段區間的值,都可以由dp[n/i]轉移過來
所以有轉移方程:
dp[x]=∑i=1x?1dp[i]+∑dp[xl]\sum_{i=1}^{x-1}dp[i]+\sum dp[\frac{x}{l}]∑i=1x?1?dp[i]+∑dp[lx?]
前者我用樹狀數組維護
復雜度:nnn\sqrt{n}nn?
代碼:
// Problem: D1. Up the Strip (simplified version) // Contest: Codeforces - Codeforces Round #740 (Div. 2, based on VK Cup 2021 - Final (Engine)) // URL: https://codeforces.com/contest/1561/problem/D1 // Memory Limit: 128 MB // Time Limit: 6000 ms // Data:2021-08-25 00:01:00 // By Jozky #include <bits/stdc++.h> #include <unordered_map> #define debug(a, b) printf("%s = %d\n", a, b); using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> PII; clock_t startTime, endTime; //Fe~Jozky const ll INF_ll= 1e18; const int INF_int= 0x3f3f3f3f; void read(){}; template <typename _Tp, typename... _Tps> void read(_Tp& x, _Tps&... Ar) {x= 0;char c= getchar();bool flag= 0;while (c < '0' || c > '9')flag|= (c == '-'), c= getchar();while (c >= '0' && c <= '9')x= (x << 3) + (x << 1) + (c ^ 48), c= getchar();if (flag)x= -x;read(Ar...); } template <typename T> inline void write(T x) {if (x < 0) {x= ~(x - 1);putchar('-');}if (x > 9)write(x / 10);putchar(x % 10 + '0'); } void rd_test() { #ifdef LOCALstartTime= clock();freopen("in.txt", "r", stdin); #endif } void Time_test() { #ifdef LOCALendTime= clock();printf("\nRun Time:%lfs\n", (double)(endTime - startTime) / CLOCKS_PER_SEC); #endif } const int maxn= 2e5 + 9; ll a[maxn]; ll f[maxn]; ll n, mod; ll lowbits(ll x) {return x & (-x); } void update(int pos, ll val) {for (int i= pos; i < maxn; i+= lowbits(i)) {a[i]= (a[i] + val) % mod;} } ll query(int pos) {ll val= 0;for (int i= pos; i; i-= lowbits(i)) {val= (val + a[i]) % mod;}return val; } int main() {//rd_test();cin >> n >> mod;for (int i= 1; i <= n; i++) {if (i == 1) {f[i]= 1;update(i, f[i]);continue;}f[i]= query(i - 1);int r;for (int l= 2; l <= i; l= r + 1) {r= i / (i / l);int R= min(r, i);int len= R - l + 1;f[i]= (f[i] + 1ll * len * f[i / l] % mod) % mod;}update(i, f[i]);}printf("%lld\n", f[n] % mod);return 0;//Time_test(); }D2
題解:
這個題的數據大了20,很明顯nnn\sqrt{n}nn?過不了
現在對于4e6的數據,很明顯我們要優化成nlog?nn\log{n}nlogn的做法
對于一個數i,那么某種倍數j,會讓[i?j,i?j+i)[i*j,i*j+i)[i?j,i?j+i)這個范圍內都可以移動到i位置
當然還要注意邊界情況:i?j<=n且j?i+i<=n+1i*j<=n且j*i+i<=n+1i?j<=n且j?i+i<=n+1
轉移方程為:
dp[i]=∑j=i+1ndp[j]+∑i=1i?j<=n∑k=i?ji?j+j?1dp[k]\sum_{j=i+1}^{n}dp[j]+\sum_{i=1}^{i*j<=n} \sum_{k=i*j}^{i*j+j-1} dp[k]∑j=i+1n?dp[j]+∑i=1i?j<=n?∑k=i?ji?j+j?1?dp[k]
枚舉倍數的時間復雜度是O(logn)O(log n)O(logn)
總復雜度是nlog?nn\log{n}nlogn
代碼:
// Problem: D1. Up the Strip (simplified version) // Contest: Codeforces - Codeforces Round #740 (Div. 2, based on VK Cup 2021 - Final (Engine)) // URL: https://codeforces.com/contest/1561/problem/D1 // Memory Limit: 128 MB // Time Limit: 6000 ms // Data:2021-08-25 00:01:00 // By Jozky #include <bits/stdc++.h> #include <unordered_map> #define debug(a, b) printf("%s = %d\n", a, b); using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> PII; clock_t startTime, endTime; //Fe~Jozky const ll INF_ll= 1e18; const int INF_int= 0x3f3f3f3f; void read(){}; template <typename _Tp, typename... _Tps> void read(_Tp& x, _Tps&... Ar) {x= 0;char c= getchar();bool flag= 0;while (c < '0' || c > '9')flag|= (c == '-'), c= getchar();while (c >= '0' && c <= '9')x= (x << 3) + (x << 1) + (c ^ 48), c= getchar();if (flag)x= -x;read(Ar...); } template <typename T> inline void write(T x) {if (x < 0) {x= ~(x - 1);putchar('-');}if (x > 9)write(x / 10);putchar(x % 10 + '0'); } void rd_test() { #ifdef LOCALstartTime= clock();freopen("in.txt", "r", stdin); #endif } void Time_test() { #ifdef LOCALendTime= clock();printf("\nRun Time:%lfs\n", (double)(endTime - startTime) / CLOCKS_PER_SEC); #endif } const int maxn= 5e6 + 9; ll a[maxn]; ll f[maxn]; int n; ll mod; ll lowbits(ll x) {return x & (-x); } void update(int pos, ll val) {for (int i= pos; i < maxn; i+= lowbits(i)) {a[i]= (a[i] + val) % mod;} } ll query(int pos) {ll val= 0;for (int i= pos; i; i-= lowbits(i)) {val= (val + a[i]) % mod;}return val; } ll sum[maxn]; int main() {//rd_test();cin >> n >> mod;f[n]= 1ll;sum[n]= 1ll;for (int i= n - 1; i >= 1; i--) {f[i]= sum[i + 1];for (int j= 2; j * i <= n; j++) {ll l= i * j;ll r= min(1ll * j * i + j, 1ll * n + 1);f[i]= (f[i] + sum[l] - sum[r]) % mod;}sum[i]= (sum[i + 1] + f[i]) % mod;}printf("%lld\n", f[1] % mod);return 0;//Time_test(); }總結
以上是生活随笔為你收集整理的cf1561D Up the Strip(D1D2)的全部內容,希望文章能夠幫你解決所遇到的問題。