clf =SVC(kernel='linear',random_state=2020)
import cv2
import matplotlib.pyplot as plt
import numpy as np
import json
with open('/home/kesci/input/weather_image1552/train.json','r') as f:js_data=json.load(f)
cnt=0
mp={'sunny':0,'cloudy':1}
js_pic=[]
js_lab=[]for key in js_data:if(cnt<10):js_pic.append(key)js_lab.append(mp[js_data[key]])cnt+=1# for i in range(len(v_pic)):# print(v_pic[i],v_lab[i])
prePath='/home/kesci/input/weather_image1552/訓練集/'
features=[]for i in range(len(js_pic)):img=cv2.imread(prePath+js_pic[i],0)# plt.imshow(img)dsize=(100,128)img_rs=cv2.resize(img,dsize)hg=cv2.HOGDescriptor()# winFt=hg.getDescriptorSize()hog=hg.compute(img_rs).reshape(-1)print(hog)features.append(hog)# for i in range(10):from sklearn.svm import SVC
clf =SVC(kernel='linear',random_state=2020)
feature=np.array(features)
label=np.array(js_lab)# feature = np.concatenate(feature, axis=0)# label = np.concatenate(label, axis=0)
clf.fit(feature, label)
clf.score(feature, label)