[构造训练]CF1227G Not Same,CF1375H Set Merging,CF1364E X-OR
文章目錄
- T1:CF1227G Not Same
- solution
- code
- T2:CF1364E X-OR
- solution
- code
- T3:CF1375H Set Merging
- solution
- code
~~腦子是個(gè)好東西,希望人人都有
構(gòu)造真的不是個(gè)東西,看了一天視頻,沒有一道題會(huì)做~~
T1:CF1227G Not Same
點(diǎn)擊查看
solution
通過(guò)觀察樣例輸出,像01矩陣,事實(shí)證明,的確如此
將問(wèn)題轉(zhuǎn)化一下,變成矩陣思考
每一列的和一定,每一行互不相同
先考慮如果全是nnn,可以怎么構(gòu)造??
——很簡(jiǎn)單
將n×nn\times nn×n的全是111的矩陣,挖掉對(duì)角線,然后再填一行全是111
這個(gè)做法提供了正解方向
考慮能否構(gòu)造出一個(gè)n+1n+1n+1行nnn列的符合要求的矩陣??
——答案是當(dāng)然可以
將所有數(shù)字從大到小排序,對(duì)于第iii列,就從第iii行開始填
一直往下填,如果不夠就跳到第111行再繼續(xù)填
簡(jiǎn)單證明一下,為什么這么填就保證了行行之間互不相同??——反證法
假設(shè)第iii行和第jjj行相同(i<j)(i<j)(i<j),用(i,j)(i,j)(i,j)表示第iii行第jjj列
必有(i,j)=1,(j,i)=1(i,j)=1,(j,i)=1(i,j)=1,(j,i)=1
第jjj行和第iii行的jjj列都為111,表明aj>1a_j>1aj?>1
思考i+1i+1i+1列,有ai≥ai+1a_i\ge a_{i+1}ai?≥ai+1?
因?yàn)樗袛?shù)字取值[1,n][1,n][1,n],而我們構(gòu)造的矩陣為n+1n+1n+1行,所以必有(i,i+1)=0(i,i+1)=0(i,i+1)=0
對(duì)應(yīng)過(guò)去必有(j,i+1)=0(j,i+1)=0(j,i+1)=0
(i,i+1)=0(i,i+1)=0(i,i+1)=0這個(gè)條件能說(shuō)明什么??
——ai>ai+1a_i>a_{i+1}ai?>ai+1?,即aia_iai?一定嚴(yán)格大于ai+1a_{i+1}ai+1?
再思考i+2i+2i+2列,有ai>ai+1≥ai+2,(i+1,i+2)=0a_i>a_{i+1}\ge a_{i+2},(i+1,i+2)=0ai?>ai+1?≥ai+2?,(i+1,i+2)=0
可以畫畫圖,發(fā)現(xiàn)如果想要(i,i+2)=1(i,i+2)=1(i,i+2)=1,必有ai=ai+1a_i=a_{i+1}ai?=ai+1?,矛盾
所以(i,i+2)=0(i,i+2)=0(i,i+2)=0,對(duì)應(yīng)有(j,i+2)=0(j,i+2)=0(j,i+2)=0
(i+1,i+2)=0,(i,i+2)=0(i+1,i+2)=0,(i,i+2)=0(i+1,i+2)=0,(i,i+2)=0這個(gè)條件又能說(shuō)明什么??
——ai>ai+1>ai+2a_i>a_{i+1}>a_{i+2}ai?>ai+1?>ai+2?
以此類推,可以推出ai>ai+1>...>aj?1a_i>a_{i+1}>...>a_{j-1}ai?>ai+1?>...>aj?1?
且(j,i+1)=0,(j,i+2)=0...(j,j?1)=0(j,i+1)=0,(j,i+2)=0...(j,j-1)=0(j,i+1)=0,(j,i+2)=0...(j,j?1)=0
關(guān)注(j,j?1)=0(j,j-1)=0(j,j?1)=0,翻譯一下:第j?1j-1j?1列的第jjj行為000
然而根據(jù)我們的規(guī)則,第j?1j-1j?1列應(yīng)當(dāng)從j?1j-1j?1行開始填
于是得到aj?1=1a_{j-1}=1aj?1?=1,又因?yàn)榕判蚴菑拇蟮叫?#xff0c;a∈[1,n]a∈[1,n]a∈[1,n],所以aj?1=aj=1a_{j-1}=a_j=1aj?1?=aj?=1
與上面求出的aj>1a_j>1aj?>1矛盾
故證明了構(gòu)造的不重復(fù)性
code
#include <cstdio> #include <algorithm> using namespace std; #define maxn 1005 int n, opt; int a[maxn], id[maxn], pos[maxn]; int matrix[maxn][maxn];bool cmp( int i, int j ) {return a[i] > a[j]; }int main() {scanf( "%d", &n );for( int i = 1;i <= n;i ++ )scanf( "%d", &a[i] ), id[i] = i;sort( id + 1, id + n + 1, cmp );for( int i = 1;i <= n;i ++ )pos[id[i]] = i;for( int i = 1;i <= n;i ++ )for( int j = 1;j <= a[id[i]];j ++ ) {int p = ( i + j - 1 ) > n + 1 ? i + j - n - 2 : i + j - 1;matrix[p][i] = 1;}printf( "%d\n", n + 1 );for( int i = 1;i <= n + 1;i ++ ) {for( int j = 1;j <= n;j ++ )printf( "%d", matrix[i][pos[j]] );printf( "\n" );}return 0; }T2:CF1364E X-OR
點(diǎn)擊查看
solution
首先要了解∣|∣操作原理,兩個(gè)數(shù)的二進(jìn)制上對(duì)應(yīng)位置有一個(gè)為111,則∣|∣的結(jié)果便為111
故有兩個(gè)很顯然的結(jié)論
1.0∣x=x0|x=x0∣x=x
2.x∣y≥x,x∣y≥yx|y\ge x,x|y\ge yx∣y≥x,x∣y≥y
觀察總操作次數(shù)比2n2n2n多了幾次常數(shù)操作
于是乎,想到如何在nnn次查詢左右找出000所在的位置
然后將其余位置依次與000詢問(wèn),就能得到位置上的數(shù)值大小了
接下來(lái)就只說(shuō)說(shuō)如何找000??
——其實(shí)很簡(jiǎn)單
先隨便選兩個(gè)x,yx,yx,y,然后與剩下的數(shù)依次查詢
1.Px∣Py>Py∣Pz?Px≠0,x=zP_x|P_y>P_y|P_z\Rightarrow P_x≠0,x=zPx?∣Py?>Py?∣Pz??Px??=0,x=z
2.Px∣Py<Py∣PzP_x|P_y<P_y|P_zPx?∣Py?<Py?∣Pz?,此時(shí)不進(jìn)行任何操作
3.Px∣Py=Py∣Pz?Py≠0,y=zP_x|P_y=P_y|P_z\Rightarrow P_y≠0,y=zPx?∣Py?=Py?∣Pz??Py??=0,y=z
這樣就鎖定了x,yx,yx,y中必有一個(gè)為000
再隨機(jī)zzz,或PzP_zPz?的值更小的,便是000
code
#include <cstdio> #include <algorithm> using namespace std; #define maxn 5000 int n; int s[maxn], ans[maxn];int ask( int x, int y ) {printf( "? %d %d\n", x, y );fflush( stdout );int z;scanf( "%d", &z );return z; }int main() {scanf( "%d", &n );for( int i = 1;i <= n;i ++ )s[i] = i;random_shuffle( s + 1, s + n + 1 );int x = s[1], y = s[2];int val = ask( x, y ); for( int i = 3;i <= n;i ++ ) {int z = s[i];if( z == x || z == y ) continue;else {int w = ask( z, y );if( w < val ) val = w, x = z; else if( w == val ) y = z, val = ask( x, y);}}while( 1 ) {int z = s[rand() % n + 1];if( z == x || z == y ) continue;else {int v1 = ask( x, z );int v2 = ask( y, z );if( v1 == v2 ) continue;/*不能刪去!!可能出現(xiàn)x,y其中一個(gè)為0另外一個(gè)又恰好是z的子串(其二進(jìn)制上為1的每一位,z對(duì)應(yīng)的也是1)此時(shí)或起來(lái)的值都是z無(wú)法判斷誰(shuí)是0 */ if( v1 > v2 ) swap( x, y );break;}}for( int i = 1;i <= n;i ++ )if( i == x ) continue;else ans[i] = ask( i, x );printf( "!" );for( int i = 1;i <= n;i ++ )printf( " %d", ans[i] );return 0; } /* P(x)|P(y)>P(y)|P(z) ——> P(x)≠0 z代替x P(x)|P(y)<P(y)|P(z) 不操作 P(x)|P(y)=P(y)|P(z) ——> P(y)≠0 z代替y 最后隨機(jī)一個(gè)z來(lái)判斷x,y誰(shuí)是0 */T3:CF1375H Set Merging
點(diǎn)擊查看
solution
先從最原始的暴力下手,即找到[l,r][l,r][l,r]里的每一個(gè)數(shù),然后依次合并起來(lái)即可
——這當(dāng)然不是正解,但告訴我們單次查詢的操作次數(shù)上限為nnn
優(yōu)化暴力
考慮構(gòu)建權(quán)值線段樹,每個(gè)節(jié)點(diǎn)存儲(chǔ)節(jié)點(diǎn)區(qū)間[l,r][l,r][l,r]中每個(gè)值出現(xiàn)的位置,再?gòu)男〉酱笈判?br /> 線段樹上每個(gè)節(jié)點(diǎn)最多有n2n^2n2種不同本質(zhì)的查詢(即查詢的l,rl,rl,r不同)
可以套一個(gè)mapmapmap來(lái)記錄(記憶化),存在即出現(xiàn)過(guò),即有現(xiàn)成的集合使用
時(shí)間復(fù)雜度分析詳見第一篇
code
#include <map> #include <cstdio> #include <vector> #include <iostream> #include <algorithm> using namespace std; #define maxn 100005 #define maxq 2200005 #define Pair pair < int, int > struct node {vector < int > num;map < Pair, int > Hash; }t[maxn << 2]; Pair vis[maxq]; int n, Q, cnt; int a[maxn], pos[maxn], ans[maxn];void build( int now, int l, int r ) {for( int i = l;i <= r;i ++ )t[now].num.push_back( pos[i] );sort( t[now].num.begin(), t[now].num.end() );if( l == r ) return;int mid = ( l + r ) >> 1;build( now << 1, l, mid ), build( now << 1 | 1, mid + 1, r ); }int query( int now, int l, int r ) {int left = lower_bound( t[now].num.begin(), t[now].num.end(), l ) - t[now].num.begin();int right = upper_bound( t[now].num.begin(), t[now].num.end(), r ) - t[now].num.begin() - 1;if( right < left ) return 0;if( left == right ) return t[now].num[left];int pos = t[now].Hash[make_pair( left, right )];if( pos ) return pos;int lson = query( now << 1, l, r ), rson = query( now << 1 | 1, l, r );if( ! lson || ! rson ) return t[now].Hash[make_pair( left, right )] = lson | rson;vis[++ cnt] = make_pair( lson, rson );return t[now].Hash[make_pair( left, right )] = cnt; }int main() {scanf( "%d %d", &n, &Q );cnt = n;for( int i = 1;i <= n;i ++ )scanf( "%d", &a[i] ), pos[a[i]] = i; build( 1, 1, n );for( int i = 1, l, r;i <= Q;i ++ ) {scanf( "%d %d", &l, &r );ans[i] = query( 1, l, r );}printf( "%d\n", cnt );for( int i = n + 1;i <= cnt;i ++ )printf( "%d %d\n", vis[i].first, vis[i].second );for( int i = 1;i <= Q;i ++ )printf( "%d ", ans[i] );return 0; }總結(jié)
以上是生活随笔為你收集整理的[构造训练]CF1227G Not Same,CF1375H Set Merging,CF1364E X-OR的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 消息称苹果正利用大语言模型改造 Siri
- 下一篇: [数据结构专训][GXOI/GZOI20