P3911-最小公倍数之和【莫比乌斯反演】
正題
題目鏈接:https://www.luogu.com.cn/problem/P3911
題目大意
給出數列AAA求∑i=1n∑j=1nlcm(Ai,Aj)\sum_{i=1}^n\sum_{j=1}^nlcm(A_i,A_j)i=1∑n?j=1∑n?lcm(Ai?,Aj?)
解題思路
設cic_ici?表示Aj=iA_j=iAj?=i的個數,然后答案就是(下面n=5e4n=5e4n=5e4)∑i=1n∑j=1nlcm(i,j)cicj\sum_{i=1}^n\sum_{j=1}^nlcm(i,j)c_ic_ji=1∑n?j=1∑n?lcm(i,j)ci?cj?
 ∑i=1n∑j=1nijgcd(i,j)cicj\sum_{i=1}^n\sum_{j=1}^n\frac{ij}{gcd(i,j)}c_ic_ji=1∑n?j=1∑n?gcd(i,j)ij?ci?cj?
 ∑x=1nx∑i=1?nx?∑j=1?nx?[gcd(i,j)==1]ijci?xcj?x\sum_{x=1}^nx\sum_{i=1}^{\lfloor\frac{n}{x}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{x}\rfloor}[gcd(i,j)==1]ijc_{i*x}c_{j*x}x=1∑n?xi=1∑?xn???j=1∑?xn???[gcd(i,j)==1]ijci?x?cj?x?
 然后反演一下
 ∑x=1n∑x∣dμ(dx)d∑i=1?nd?∑j=1?nd?ijci?dcj?d\sum_{x=1}^n\sum_{x|d}\mu(\fracze8trgl8bvbq{x})d\sum_{i=1}^{\lfloor\frac{n}ze8trgl8bvbq\rfloor}\sum_{j=1}^{\lfloor\frac{n}ze8trgl8bvbq\rfloor}ijc_{i*d}c_{j*d}x=1∑n?x∣d∑?μ(xd?)di=1∑?dn???j=1∑?dn???ijci?d?cj?d?
 ∑d=1nd∑x∣dμ(dx)∑i=1?nd?∑j=1?nd?ijci?dcj?d\sum_{d=1}^nd\sum_{x|d}\mu(\fracze8trgl8bvbq{x})\sum_{i=1}^{\lfloor\frac{n}ze8trgl8bvbq\rfloor}\sum_{j=1}^{\lfloor\frac{n}ze8trgl8bvbq\rfloor}ijc_{i*d}c_{j*d}d=1∑n?dx∣d∑?μ(xd?)i=1∑?dn???j=1∑?dn???ijci?d?cj?d?
 然后兩部分分開處理就好了,時間復雜度O(nlog?n)O(n\log n)O(nlogn)
codecodecode
#include<cstdio> #include<cstring> #include<algorithm> #define ll long long using namespace std; const ll N=5e4+10; ll n,cnt,pri[N],mu[N],c[N],g[N],f[N],ans; bool v[N]; void prime(){mu[1]=1;for(ll i=2;i<N;i++){if(!v[i])pri[++cnt]=i,mu[i]=-1;for(ll j=1;j<=cnt&&i*pri[j]<N;j++){v[i*pri[j]]=1;if(i%pri[j]==0)break;mu[i*pri[j]]=mu[i]*mu[pri[j]];}}for(ll i=1;i<N;i++)for(ll j=i;j<N;j+=i)g[j]+=mu[i]*i;return; } int main() {prime();scanf("%lld",&n);for(ll i=1;i<=n;i++){ll x;scanf("%lld",&x);c[x]++;}for(ll i=1;i<N;i++)for(ll j=1;i*j<N;j++)f[i]+=c[i*j]*j;for(ll i=1;i<N;i++)ans+=f[i]*f[i]*i*g[i];printf("%lld\n",ans);return 0; }總結
以上是生活随笔為你收集整理的P3911-最小公倍数之和【莫比乌斯反演】的全部內容,希望文章能夠幫你解決所遇到的問題。
 
                            
                        - 上一篇: CF1139D-Steps to One
- 下一篇: CF570D-Tree Requests
