阶乘幂与有限微积分
定義
- 差分算子Δ\DeltaΔ:Δf(x)=f(x+1)?f(x)\Delta f(x)=f(x+1)-f(x)Δf(x)=f(x+1)?f(x)
- 平移算子EEE:Ef(x)=f(x+1)E f(x)=f(x+1)Ef(x)=f(x+1)
- 下降冪:n>0,{xn ̄=x(x?1)(x?2)...(x?n+1)x?n ̄=1(x+1)(x+2)(x+3)...(x+n)n>0,\begin{cases}x^{\underline{n}}=x(x-1)(x-2)...(x-n+1)\\x^{\underline{-n}}=\frac{1}{(x+1)(x+2)(x+3)...(x+n)}\end{cases}n>0,{xn?=x(x?1)(x?2)...(x?n+1)x?n?=(x+1)(x+2)(x+3)...(x+n)1??
- 上升冪:n>0,{xn ̄=x(x+1)(x+2)...(x+n?1)x?n ̄=1(x?1)(x?2)(x?3)...(x?n)n>0,\begin{cases}x^{\overline{n}}=x(x+1)(x+2)...(x+n-1)\\x^{\overline{-n}}=\frac{1}{(x-1)(x-2)(x-3)...(x-n)}\end{cases}n>0,{xn=x(x+1)(x+2)...(x+n?1)x?n?=(x?1)(x?2)(x?3)...(x?n)1??
- 階乘冪(下降冪和上升冪的統稱)的簡單性質:
證明:xk ̄(x?12)k ̄=x(x?12)(x?1)(x?1?12)...(x?k+1)(x?k+1?12)=2?2k×2x(2x?1)(2x?2)(2x?3)...(2x?2k+2)(2x?2k+1)=(2x)2k ̄22kx^{\underline{k}}(x-\frac{1}{2})^{\underline{k}}\\=x(x-\frac{1}{2})(x-1)(x-1-\frac{1}{2})...(x-k+1)(x-k+1-\frac{1}{2})\\=2^{-2k}\times 2x(2x-1)(2x-2)(2x-3)...(2x-2k+2)(2x-2k+1)\\=\frac{(2x)^{\underline{2k}}}{2^{2k}}xk?(x?21?)k?=x(x?21?)(x?1)(x?1?21?)...(x?k+1)(x?k+1?21?)=2?2k×2x(2x?1)(2x?2)(2x?3)...(2x?2k+2)(2x?2k+1)=22k(2x)2k??
(x+y)n ̄=∑i=0n(ni)xi ̄yn?i ̄(x+y)^{\underline{n}}=\sum\limits_{i=0}^n\dbinom{n}{i}x^{\underline i}y^{\underline{n-i}}(x+y)n?=i=0∑n?(in?)xi?yn?i?
(x+y)n ̄=∑i=0n(ni)xi ̄yn?i ̄(x+y)^{\overline{n}}=\sum\limits_{i=0}^n\dbinom{n}{i}x^{\overline i}y^{\overline{n-i}}(x+y)n=i=0∑n?(in?)xiyn?i?
有限微積分
-
Δ(xm ̄)=mxm?1 ̄\Delta(x^{\underline{m}})=mx^{\underline{m-1}}Δ(xm?)=mxm?1? (類比求導)
-
∑i=0n?1ik ̄=nk+1 ̄k+1\sum_{i=0}^{n-1}i^{\underline{k}}=\frac{n^{\underline{k+1}}}{k+1}∑i=0n?1?ik?=k+1nk+1?? (類比經典積分∫xk=xk+1k+1\int x^k=\frac{x^{k+1}}{k+1}∫xk=k+1xk+1?)
特例:經典積分中k=?1k=-1k=?1時有特例∫1x=ln?x\int \frac{1}{x}=\ln x∫x1?=lnx,這里也有∑i=0n?1i?1 ̄=∑i=0n?11i+1=∑i=1n1i\sum_{i=0}^{n-1}i^{\underline{-1}}=\sum_{i=0}^{n-1}\frac{1}{i+1}=\sum_{i=1}^{n}\frac{1}{i}∑i=0n?1?i?1?=∑i=0n?1?i+11?=∑i=1n?i1?
(調和級數:∑i=0∞1i\sum_{i=0}^{\infty}\frac{1}{i}∑i=0∞?i1?) -
Δ(2x)=2x\Delta(2^x)=2^xΔ(2x)=2x (類比(ex)′=ex(e^x)\prime=e^x(ex)′=ex)
-
乘法法則:Δ(uv)=u?Δv+Ev?Δu\Delta(uv)=u\cdot\Delta v+Ev\cdot\Delta uΔ(uv)=u?Δv+Ev?Δu
-
分部積分法則:∑u?Δv=uv?∑Ev?Δu\sum u\cdot \Delta v=uv-\sum Ev\cdot \Delta u∑u?Δv=uv?∑Ev?Δu
總結
- 上一篇: 游戏 (博弈论)
- 下一篇: 怎么打包行李电脑文件如何打包