P3327 约数的个数和 [约数函数性质,数论分块]
P3327 約數(shù)的個數(shù)和
題意
d(x)d(x)d(x)為約數(shù)的個數(shù),對于每個詢問,回答∑i=1n∑j=1md(ij)\sum_{i=1}^n\sum_{j=1}^md(ij)∑i=1n?∑j=1m?d(ij).
題解
這個題推得我頭皮發(fā)麻,然后還沒推出來,后來發(fā)現(xiàn)要做這題的先知道一個性質(zhì):
d(ij)=∑x∣i∑y∣j[gcd(x,y)=1]d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]d(ij)=∑x∣i?∑y∣j?[gcd(x,y)=1]
通過這個性質(zhì),我們把原式寫成
∑i=1n∑j=1m∑x∣i∑y∣j[gcd(x,y)=1]\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]∑i=1n?∑j=1m?∑x∣i?∑y∣j?[gcd(x,y)=1]
我們知道∑d∣xμ(d)=[x=1]\sum_{d|x}\mu(d)=[x=1]∑d∣x?μ(d)=[x=1],代換進去,就得到了:
∑i=1n∑j=1m∑x∣i∑y∣j∑d∣gcd(x,y)μ(d)\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}\sum_{d|gcd(x,y)}\mu(d)∑i=1n?∑j=1m?∑x∣i?∑y∣j?∑d∣gcd(x,y)?μ(d)
變枚舉i,ji,ji,j為枚舉x,yx,yx,y:
∑x=1n∑y=1m?nx??my?∑d∣gcd(x,y)μ(d)\sum_{x=1}^n\sum_{y=1}^m \lfloor \frac{n}{x} \rfloor \lfloor \frac{m}{y} \rfloor\sum_{d|gcd(x,y)}\mu(d)∑x=1n?∑y=1m??xn???ym??∑d∣gcd(x,y)?μ(d)
再轉(zhuǎn)為枚舉ddd,得到:
∑d=1μ(d)∑x=1n/d∑y=1m/d?nxd??myd?\sum_{d=1}\mu(d)\sum_{x=1}^{n/d}\sum_{y=1}^{m/d} \lfloor \frac{n}{xd} \rfloor \lfloor \frac{m}{yd} \rfloor∑d=1?μ(d)∑x=1n/d?∑y=1m/d??xdn???ydm??
也即
∑d=1μ(d)(∑x=1n/d?nxd?)(∑y=1m/d?myd?)\sum_{d=1}\mu(d)(\sum_{x=1}^{n/d} \lfloor \frac{n}{xd} \rfloor) (\sum_{y=1}^{m/d} \lfloor \frac{m}{yd} \rfloor)∑d=1?μ(d)(∑x=1n/d??xdn??)(∑y=1m/d??ydm??)
記f(x)=∑i=1x?xi?f(x)=\sum_{i=1}^x \lfloor \frac{x}{i} \rfloorf(x)=∑i=1x??ix??,則原式:
∑d=1μ(d)f(?nd?)f(?md?)\sum_{d=1}\mu(d)f(\lfloor \frac{n}ze8trgl8bvbq \rfloor)f(\lfloor \frac{m}ze8trgl8bvbq \rfloor)∑d=1?μ(d)f(?dn??)f(?dm??)
若f(x)f(x)f(x)可以O(1)O(1)O(1)查詢的話,上面的式子就可以O(n)O(\sqrt{n})O(n?)數(shù)論分塊求出.
顯然,f(x)f(x)f(x)可以用O(nn)O(n\sqrt{n})O(nn?)的時間復(fù)雜度預(yù)處理出來,方法也是數(shù)論分塊.
代碼
// luogu-judger-enable-o2 #include <iostream> #include <algorithm> #include <cstring> #define pr(x) std::cout << #x << ':' << x << std::endl #define rep(i,a,b) for(int i = a;i <= b;++i) typedef long long LL; const int N = 50010; int n,m,T; int prime[N+10],mu[N+10],pcnt,zhi[N+10],low[N+10]; void sieve() {mu[1] = zhi[1] = 1;for(int i = 2;i <= N;++i) {if(!zhi[i]) {prime[pcnt++] = i;mu[i] = -1;}for(int j = 0;j < pcnt && i * prime[j] <= N;++j) {zhi[i*prime[j]] = 1;if(i % prime[j] == 0) {mu[i*prime[j]] = 0;break;}else{mu[i*prime[j]] = -mu[i];}}} } LL F[N+10]; int main() {std::ios::sync_with_stdio(false);std::cin >> T;sieve();for(int i = 1;i <= N;++i) {mu[i] += mu[i-1];}for(int i = 1;i <= N;++i) {for(int x = 1,last;x <= i;x = last+1) {last = i/(i/x);F[i] += (last-x+1)*(i/x);}}while(T--) {std::cin >> n >> m;LL ans = 0;int lim = n > m?m:n;for(int x = 1,nx1,nx2,nxt;x <= lim;x = nxt+1) {nx1 = n/(n/x);nx2 = m/(m/x);nxt = nx1>nx2?nx2:nx1;ans += (mu[nxt]-mu[x-1])*F[n/x]*F[m/x];}std::cout << ans << std::endl;}return 0; }總結(jié)
以上是生活随笔為你收集整理的P3327 约数的个数和 [约数函数性质,数论分块]的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 可可爱爱的修勾壁纸分享可可爱爱图片壁纸
- 下一篇: 如何解压压缩包到指定的目录解压当前目录下