【2020.12.30更新】信号处理常用公式(一)
積化和差
cos?αcos?β=12[cos?(α+β)+cos?(α?β)]\cos \alpha \cos \beta = \frac{1}{2}[\cos (\alpha + \beta ) + \cos (\alpha - \beta )]cosαcosβ=21?[cos(α+β)+cos(α?β)]sin?αcos?β=12[sin?(α+β)+sin?(α?β)]\sin \alpha \cos \beta = \frac{1}{2}[\sin (\alpha + \beta ) + \sin (\alpha - \beta )]sinαcosβ=21?[sin(α+β)+sin(α?β)]sin?αsin?β=12[cos?(α?β)?cos?(α+β)]\sin \alpha \sin \beta = \frac{1}{2}[\cos (\alpha - \beta ) - \cos (\alpha + \beta )]sinαsinβ=21?[cos(α?β)?cos(α+β)]cos?αsin?β=12[sin?(α+β)?sin?(α?β)]\cos \alpha \sin \beta = \frac{1}{2}[\sin (\alpha + \beta ) - \sin (\alpha - \beta )]cosαsinβ=21?[sin(α+β)?sin(α?β)]
自相關與互相關
RX(t2,t1)=RX?(t1,t2){R_X}({t_2},{t_1}) = R_X^*({t_1},{t_2})RX?(t2?,t1?)=RX??(t1?,t2?)RXY(t2,t1)=RYX?(t1,t2){R_{XY}}({t_2},{t_1}) = R_{YX}^*({t_1},{t_2})RXY?(t2?,t1?)=RYX??(t1?,t2?)RX(t2,t1)=RX(τ),τ=t1?t2{R_X}({t_2},{t_1}) = {R_X}(\tau ),\quad \tau = {t_1} - {t_2}RX?(t2?,t1?)=RX?(τ),τ=t1??t2?
矩陣微分
YYY、BBB和RRR均代表矩陣,zzz和aaa代表向量,上標T表示轉置,?*?表示共軛,H表示共軛轉置。
?YTB?B=Y\frac{{\partial {Y^{\mathop{\rm T}\nolimits} }B}}{{\partial B}} = Y?B?YTB?=Y?BTY?B=Y\frac{{\partial {B^{\mathop{\rm T}\nolimits} }Y}}{{\partial B}} = Y?B?BTY?=Y
規律總結: “前面”為轉置,對“不轉置”求導,結果為“另一個不轉置”
?BTYTYB?B=2YTYB\frac{{\partial {B^{\mathop{\rm T}\nolimits} }{Y^{\mathop{\rm T}\nolimits} }YB}}{{\partial B}} = 2{Y^{\mathop{\rm T}\nolimits} }YB?B?BTYTYB?=2YTYB?BTB?B=2B\frac{{\partial {B^{\mathop{\rm T}\nolimits} }B}}{{\partial B}} = 2B?B?BTB?=2B?BTWB?B=WB+WTB\frac{{\partial {B^{\mathop{\rm T}\nolimits} }WB}}{{\partial B}} = WB + {W^{\mathop{\rm T}\nolimits} }B?B?BTWB?=WB+WTB
特別地,WT=W{{W^{\mathop{\rm T}\nolimits} } = W}WT=W時,
?BTWB?B=WB+WTB=2WB\frac{{\partial {B^{\mathop{\rm T}\nolimits} }WB}}{{\partial B}} = WB + {W^{\mathop{\rm T}\nolimits} }B = 2WB?B?BTWB?=WB+WTB=2WB
復微分
下表給出了標量函數f(w)f(\boldsymbol{w})f(w)和向量函數f(w)\boldsymbol{f}(\boldsymbol{w})f(w)關于可變向量w\boldsymbol{w}w和w?\boldsymbol{w}^{*}w?的復數微分結果。
| 標量f(w)f(\boldsymbol{w})f(w) | re?[wHx]\operatorname{re}\left[\boldsymbol{w}^{\mathrm{H}} \boldsymbol{x}\right]re[wHx] | 12x?\frac{1}{2}\boldsymbol{x}^{*}21?x? | 12x\frac{1}{2}\boldsymbol{x}21?x |
| 標量f(w)f(\boldsymbol{w})f(w) | wHx\boldsymbol{w}^{\mathrm{H}} \boldsymbol{x}wHx | 0{\bf{0}}0 | x\boldsymbol{x}x |
| 標量f(w)f(\boldsymbol{w})f(w) | xHw\boldsymbol{x}^{\mathrm{H}} \boldsymbol{w}xHw | x?\boldsymbol{x}^{*}x? | 0{\bf{0}}0 |
| 標量f(w)f(\boldsymbol{w})f(w) | wHRw\boldsymbol{w}^{\mathrm{H}} \boldsymbol{R} \boldsymbol{w}wHRw | RTw?=(RHw)?\boldsymbol{R}^{\mathrm{T}} \boldsymbol{w}^{*}=\left(\boldsymbol{R}^{\mathrm{H}} \boldsymbol{w}\right)^{*}RTw?=(RHw)? | Rw\boldsymbol{R} \boldsymbol{w}Rw |
| 矢量f(w)\boldsymbol{f}(\boldsymbol{w})f(w) | H1w+H2w?\boldsymbol{H}_{1} \boldsymbol{w}+\boldsymbol{H}_{2} \boldsymbol{w}^{*}H1?w+H2?w? | H1T\boldsymbol{H}_{1}^{\mathrm{T}}H1T? | H2T\boldsymbol{H}_{2}^{\mathrm{T}}H2T? |
一個計算小技巧
已知基向量兩兩正交
∫?∞∞fm(t)fn?(t)dt=δ(m?n)\int_{ - \infty }^\infty {{f_m}(t)f_n^*(t)dt} = \delta (m - n)∫?∞∞?fm?(t)fn??(t)dt=δ(m?n)
s(t){s(t)}s(t)可由基向量線性組合近似
s^(t)=∑k=1Kskfk(t)\hat s(t) = \sum\limits_{k = 1}^K {{s_k}{f_k}(t)}s^(t)=k=1∑K?sk?fk?(t)
由誤差與基向量正交,有
?s(t)?s^(t),fn(t)?=0?sn=?s(t),fn(t)?\left\langle {s(t) - \hat s(t),{f_n}(t)} \right\rangle = 0 \Rightarrow {s_n} = \left\langle {s(t),{f_n}(t)} \right\rangle?s(t)?s^(t),fn?(t)?=0?sn?=?s(t),fn?(t)?
則誤差的二范數為
εe=∫?∞∞(s(t)?s^(t))(s(t)?s^(t))?dt{\varepsilon _e} = \int_{ - \infty }^\infty {(s(t) - \hat s(t)){{(s(t) - \hat s(t))}^*}dt}εe?=∫?∞∞?(s(t)?s^(t))(s(t)?s^(t))?dt
=∫?∞∞∣s(t)∣2dt?∫?∞∞∑k=1Kskfk(t)?s?(t)dt??s(t)?s^(t),s^?(t)?= \int_{ - \infty }^\infty {|s(t){|^2}dt} - \int_{ - \infty }^\infty {\sum\limits_{k = 1}^K {{s_k}{f_k}(t)} \cdot {s^*}(t)dt}- \left\langle {s(t) - \hat s(t),{{\hat s}^*}(t)} \right\rangle=∫?∞∞?∣s(t)∣2dt?∫?∞∞?k=1∑K?sk?fk?(t)?s?(t)dt??s(t)?s^(t),s^?(t)?
=∫?∞∞∣s(t)∣2dt?∑k=1Ksk[∫?∞∞s(t)fk?(t)dt]?= \int_{ - \infty }^\infty {|s(t){|^2}dt} - \sum\limits_{k = 1}^K {{s_k}{{[\int_{ - \infty }^\infty {s(t)f_k^*(t)dt} ]}^*}}=∫?∞∞?∣s(t)∣2dt?k=1∑K?sk?[∫?∞∞?s(t)fk??(t)dt]?
=∫?∞∞∣s(t)∣2dt?∑k=1Ksksk?= \int_{ - \infty }^\infty {|s(t){|^2}dt} - \sum\limits_{k = 1}^K {{s_k}s_k^*}=∫?∞∞?∣s(t)∣2dt?k=1∑K?sk?sk??
=∫?∞∞∣s(t)∣2dt?∑k=1K∣sk∣2= \int_{ - \infty }^\infty {|s(t){|^2}dt} - \sum\limits_{k = 1}^K {|{s_k}{|^2}}=∫?∞∞?∣s(t)∣2dt?k=1∑K?∣sk?∣2
總結
以上是生活随笔為你收集整理的【2020.12.30更新】信号处理常用公式(一)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: iOS 12.5.4正式版发布,建议所有
- 下一篇: iOS 15 公测版什么时候发布 iOS